
Applicability of ASP-based Problem Solving on Tree Decompositions

Bernhard Bliem, Reinhard Pichler and Stefan Woltran
Institute of Information Systems, Vienna University of Technology

Favoritenstrasse 9–11; A-1040 Wien; Austria
{bliem, pichler, woltran}@dbai.tuwien.ac.at

Abstract
Many computationally hard problems in knowl-
edge representation and reasoning (KRR) can be-
come tractable if the graph structure underlying the
problem instances at hand exhibits certain proper-
ties. An important structural parameter of this kind
is treewidth, which measures the “tree-likeness” of
a graph or, more generally, of a structure. By us-
ing a seminal result due to Courcelle, several fixed-
parameter tractability (FPT) results in the area of
AI and KRR have been proven in the last decade.
To turn such theoretical tractability results into effi-
cient computation in practice, suitable systems for
conveniently implementing the necessary dynamic
programming algorithms are required. A recent
approach makes use of Answer Set Programming
(ASP) for both the declarative description of dy-
namic programming algorithms and for solving the
necessary subproblems. In this work, we prove that
this new method can be used to efficiently solve any
problem whose fixed-parameter tractability follows
from Courcelle’s Theorem.

1 Introduction
Intractability is a ubiquitous phenomenon in many areas
of Computer Science – especially in Artificial Intelligence.
Gottlob et al. [2010] have identified bounded treewidth as
a key to the tractability of many reasoning problems includ-
ing abduction and closed-world reasoning. More precisely,
these problems can be characterized by a sentence in monadic
second-order logic (MSO, for short), i.e., first-order predi-
cate logic where in addition set variables are allowed. By
Courcelle’s Theorem [Courcelle, 1990] it follows that these
problems are fixed-parameter linear (FPL, for short) w.r.t. the
treewidth, i.e., they are solvable in linear time provided that
the treewidth of the input structure is bounded by a constant.

In principle, there exist generic methods to automatically
construct a concrete FPL algorithm for a problem from its
MSO characterization. The classical approach works by ex-
ploiting the relationship between the model checking (MC)
problem of MSO formulas on trees and finite tree automata.
(see e.g. [Flum et al., 2002; Klarlund et al., 2002]). Re-
cently an alternative game-theoretic approach (termed KLR

approach below) has been presented by Kneis, Langer, and
Rossmanith [2011] that underlies the system of Langer et al..
[2012]. One drawback of all these generic approaches is that
they rely entirely on the MSO encoding of a problem; ad-
ditional domain-specific knowledge that would improve per-
formance is hard to incorporate. In contrast, several “tailor-
made” algorithms have been developed specifically for par-
ticular problems. These algorithms usually employ dynamic
programming over a tree decomposition of the given instance,
propagating problem-specific data structures along this de-
composition. Examples for such algorithms in the AI domain
cover model counting [Samer and Szeider, 2010], belief revi-
sion [Pichler et al., 2009], and argumentation [Dvorák et al.,
2012]. The disadvantage of this approach is its purely pro-
cedural nature, thus a practical implementation requires con-
siderable programming effort. What is ultimately desired is a
synthesis of the two paradigms, i.e. a declarative framework
that allows the incorporation of domain-specific knowledge
via dynamic programming.

In [Bliem et al., 2012], we introduced the D-FLAT
(Dynamic Programming Framework with Local Execution of
ASP on Tree Decompositions) approach that meets these re-
quirements.1 Its core idea is to use Answer Set Programming
(ASP) [Gelfond and Leone, 2002; Marek and Truszczyński,
1999; Niemelä, 1999] to solve subproblems corresponding
to subtrees of a tree decomposition and then to combine so-
lutions. Our framework realizes this by heuristically gener-
ating a good tree decomposition of an input structure, exe-
cuting a user-supplied ASP program at each tree decompo-
sition node in a bottom-up traversal, and performing actions
according to special predicates in the answer sets. The user
of D-FLAT benefits from the convenient modeling language
of ASP which leads to a relatively hassle-free specification
of algorithms that exploit fixed-parameter tractability w.r.t.
treewidth. Moreover, D-FLAT takes care of several techni-
cal tasks (decomposition of the input, propagating the data
structures) and the underlying ASP engine ensures that even
complex specifications are solved efficiently.

So far, it has remained unclear whether the D-FLAT ap-
proach is generally applicable to every MSO-definable prob-
lem. In this work, we show that the answer is positive. To

1D-FLAT is available as free software at http://www.dbai.
tuwien.ac.at/research/project/dynasp/dflat/.

this end, we use the KLR approach to Courcelle’s Theo-
rem as theoretical underpinning for a D-FLAT encoding for
MSO evaluation. This proves that any problem whose fixed-
parameter tractability is established via Courcelle’s Theorem
can be solved efficiently with ASP in the D-FLAT framework.

The main challenges are the following: First, several mod-
ifications of the KLR approach will be necessary. Above all,
that approach contains an isomorphism check between sub-
structures induced by the domain elements present in some
subtree of the tree decomposition in order to prune redun-
dant branches of the tree representing the model checking
game. This pruning is crucial to ensure the FPL behavior. We
will show how this isomorphism check can be replaced by
an equality check which is much better suitable for the ASP
programs applied in the D-FLAT approach. As a byproduct,
replacement of the isomorphism checks by equality checks
yields a way to further enhance the KLR approach. Sec-
ond, for the D-FLAT approach it is crucial to define which
of the problem-solving steps are to be specified by the user
(via an ASP encoding) and which general patterns of com-
plex dynamic programming algorithms (as in the KLR ap-
proach) should be taken care of by the system. Here, the
goal is to find a good balance between usability (specifica-
tion of tailor-made algorithms should remain as simple as
initially proposed in [Bliem et al., 2012]) and expressiveness
(the complex structures required for MSO evaluation should
be expressible in D-FLAT encodings).

We can thus put our main contribution into a bigger pic-
ture: (i) the ASP-based D-FLAT approach provides an alter-
native method to fully capture an important class of fixed-
parameter tractable problems (any property of finite struc-
tures expressible by an MSO sentence when applied to in-
stances of bounded treewidth) allowing for a declarative, yet
domain-specific, description of the actual FPL algorithm; (ii)
due to the very nature of the D-FLAT approach, we demon-
strate that the paradigm of ASP is not only a valuable tool for
declaratively encoding a broad variety of problems (which are
traditionally solved by a single call of an off-the-shelf ASP
solver), but also for specifying algorithms that solve these
problems on a decomposed structure (via multiple calls of an
ASP solver) – an approach that should ultimately lead to sig-
nificant performance gains on instances of small treewidth.

In this paper, we only give proof sketches. Supplementary
material where proof details are worked out can be found
at http://dbai.tuwien.ac.at/proj/dynasp/
dflat/supplementary-material-gkr13.pdf.

2 Background
Answer Set Programming. ASP is a declarative language
with roots in knowledge representation and reasoning (see,
e.g., [Leone et al., 2006]) where a program Π is a set of
rules a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn.
The constituents of a rule r ∈ Π are h(r) = {a1, . . . , ak},
b+(r) = {b1, . . . , bm} and b−(r) = {bm+1, . . . , bn}. A set
of atoms I satisfies a rule r iff I ∩h(r) 6= ∅ or b−(r)∩ I 6= ∅
or b+(r) \ I 6= ∅. I is a model of a set of rules iff it satisfies
each rule. I is an answer set of a program Π iff it is a subset-
minimal model of the program ΠI = {h(r) ← b+(r) | r ∈

1{ in(X) : vertex(X) }.
2← edge(X,Y), in(X;Y).
3dominated(X) ← in(Y), edge(Y,X).
4← vertex(X), not in(X), not dominated(X).

Listing 1: Computing independent dominating sets with ASP

Π, b−(r) ∩ I = ∅} [Gelfond and Lifschitz, 1991].
With ASP programs, problem solving specifications fol-

lowing the Guess & Check principle can be represented suc-
cinctly. In particular, disjunctive rules (or rules that depend
on each other) can be thought of as opening up the search
space, whereas constraints (i.e., rules r with h(r) = ∅) im-
pose restrictions that solutions must obey.

In this paper, we use the language of the grounder Gringo
[Gebser et al., 2010] where programs can contain variables
that are instantiated by all ground terms (elements of the Her-
brand universe, i.e., constants and compound terms contain-
ing function symbols) before a solver computes answer sets
according to the propositional semantics stated above.

Example 1. The program in Listing 1 solves the INDE-
PENDENT DOMINATING SET problem for directed graphs
that are given as facts using the predicates vertex/1 and
edge/2. Let (V,E) denote the input graph and recall that
a set S ⊆ V is an independent dominating set of (V,E) iff
E ∩ S2 = ∅ and for each x ∈ V either x ∈ S or there is
some y ∈ S with (y, x) ∈ E. Note that this program not
only solves the decision variant of the problem, which is NP-
complete, but also allows for solution enumeration.

Informally, the first rule (a so-called choice rule having an
empty body) states that in/1 is to be guessed to comprise
any subset of V . The colon controls the instantiation of the
variable X such that it is only instantiated with arguments
of vertex/1 from the input. If for instance V = {a, b, c},
the grounder expands the rule to { in(a), in(b),
in(c)} leading to the intended guess of a subset of V . The
rule in line 2 – where in(X;Y) is shorthand for in(X),
in(Y) – checks the independence property. Lines 3 and 4
finally ensure that each vertex not in the guessed set is domi-
nated by this set.

Finite Structures and Tree Decompositions. A finite struc-
ture A over a set of relation symbols {R1, . . . , RK} is given
by a finite domain dom(A) and relations RAi ⊆ Ak, where k
denotes the arity ofRi. A tree decomposition of a structureA
is a pair (T, χ) where T = (N,F) is a (rooted) tree and χ :
N → 2dom(A) maps nodes to so-called bags such that (1) for
every a ∈ dom(A), there is an n ∈ N with a ∈ χ(n), (2) for
every relation symbol Ri and every tuple (a1, . . . , ak) ∈ RAi
there is an n ∈ N with {a1, . . . , ak} ⊆ χ(n), and (3) for
every a ∈ dom(A), the set {n ∈ N | a ∈ χ(n)} induces
a connected subtree of T . The width of (T, χ) is defined as
maxn∈N |χ(n)|−1. The treewidth ofA is the minimum width
over all its tree decompositions.

For any fixed integer w, deciding if a structure has
treewidth at most w and, if so, constructing a tree decompo-
sition with width w can be done in linear time [Bodlaender,
1996], although these problems are intractable when w is part
of the input [Arnborg et al., 1987].

2

By slight abuse of notation, we write n ∈ T to denote that
n is a node of T . We write Tn and An to denote the subtree
of T rooted at n and the substructure of A induced by the
domain elements occurring in the bags in Tn, respectively.
We tacitly assume that each node n ∈ T is either a leaf node,
an introduce node (having one child n′ with χ(n′) ⊆ χ(n)
and |χ(n) \ χ(n′)| = 1), a forget node (having one child n′
with χ(n′) ⊇ χ(n)) and |χ(n′) \ χ(n)| = 1) or a join node
(having two children n1, n2 with χ(n) = χ(n1) = χ(n1)),
and that the root of T has an empty bag. By adding nodes,
such a form can be obtained from any tree decomposition in
linear time without increasing the width [Kloks, 1994].
Monadic Second-Order Logic. Monadic second-order logic
(MSO) extends first-order logic by allowing quantification
over set variables which are usually denoted by upper-case
letters, whereas individual (i.e., first-order) variables are usu-
ally denoted by lower-case letters. Atomic formulas are of
the form X(x) or Ri(x1, . . . , xk) for a relation symbol Ri,
set variable X and individual variables x, x1, . . . , xk.

If a formula φ has free variables, we can evaluate it over
a structure A given a variable assignment α that assigns all
free individual variables to elements of dom(A) and all free
set variables to subsets of dom(A). If φ is thus satisfied,
we write (A, α) |= φ. For sentences φ, we can abbreviate
(A, ∅) |= φ as A |= φ.

Courcelle’s Theorem [Courcelle, 1990] states that for any
fixed MSO sentence φ and integer k, given a structure A of
treewidth at most k, one can decide A |= φ in linear time.
Example 2. Consider again the INDEPENDENT DOMINAT-
ING SET problem over structures with the binary relation
edge and a domain consisting of vertices. It can be expressed
with the MSO formula ∃S

(
ind(S) ∧ dom(S)

)
, where

ind(S) := ∀x∀y¬
(
S(x) ∧ S(y) ∧ edge(x, y)

)
and

dom(S) := ∀x
(
S(x) ∨ ∃z

(
S(z) ∧ edge(z, x)

))
.

From this it follows that the problem parameterized by
treewidth is fixed-parameter tractable. The main result of this
paper shows that this fact can be exploited using D-FLAT.

3 Dynamic Programming for MSO
In this section, we give an overview of the game-theoretic
proof of Courcelle’s Theorem from [Kneis et al., 2011] and
introduce a significant modification suitable for our purposes.

3.1 MSO Model Checking Games
The starting point of the KLR approach is the naive evaluation
of an MSO formula by inspecting all possible values of the
quantified variables. For instance, a formula φ = ∀Xψ(X)
is evaluated over a structureA by checking if ψ(U) evaluates
to true overA for all U ⊆ dom(A). For quantifier rank q of φ
and |dom(A)| = d, we thus get an upper boundO((2d+d)q)
on the number of cases that have to be considered.

The model checking (MC) game G = MC(A, φ) for the
MC problemA |= φ of MSO is characterized by a rooted tree
where each node (referred to as “position”) corresponds to an

MC problem:2 The root of G corresponds to the MC problem
A |= φ itself. Now suppose that some node p in G corre-
sponds to the MC problem (A, α) |= ψ. Then the child nodes
of p correspond to all MC subproblems that have to be solved
in order to decide (A, α) |= ψ. Thus, if ψ = ∀Xψ′ or ψ =
∃Xψ′, then p has a child node pU for every U ⊆ dom(A),
and pU corresponds to the MC problem (A, α′) |= ψ′, where
α′ denotes the extension of α in which X is interpreted as
U . Analogously, if ψ = ∀xψ′ or ψ = ∃xψ′, then p has one
child node pa for each a ∈ dom(A), and pa corresponds to
the MC problem (A, α′) |= ψ′, where α′ extends α by inter-
preting x as a. If ψ = ψ′1 ∧ ψ′2 or ψ = ψ′1 ∨ ψ′2, then p has
two child nodes p1 and p2 corresponding to the MC problems
(A, α) |= ψ1 and (A, α) |= ψ2, respectively. The leaf nodes
in G correspond to the MC problem of single literals.

As each branch specifies an assignment over all variables
occurring in φ, all truth values of the literals in the leaves are
defined. We can then propagate the truth values bottom-up
along the game tree in the obvious way to solve A |= φ.
Extended MSO Model Checking Game. Deciding A |= φ
via the MC gameMC(A, φ) requires exponential time w.r.t.
|dom(A)|. For structures of bounded treewidth one can do
better. To this end, the KLR approach makes use of an ex-
tended model checking (EMC) game EMC(A, φ), where in-
dividual variables may remain uninterpreted.3 The idea is that
an EMC game is computed for each node of a tree decompo-
sition T of A during a bottom-up traversal such that, given
the EMC game at the root of T , A |= φ can be decided.
The intuition of leaving a variable x uninterpreted at a node
n ∈ T is that x will “later” (in the bottom-up traversal) be
assigned a value from outside An. Details of this bottom-up
construction of EMC games are given in Section 3.3.

In principle, the evaluation of EMC games follows the
same pattern as the evaluation of MC games, but the truth
value of some MC subproblems can be undefined due to the
fact that some individual variables have not been assigned
a value. However, two important properties are shown in
[Kneis et al., 2011]: If the truth value of an EMC game
EMC(A, φ) is defined, then this is indeed the correct value,
i.e., it coincides with the truth value of MC(A, φ). More-
over, EMC(A, φ) can easily be converted into a correspond-
ing MC game MC(A, φ) by deleting all branches from the
tree of EMC(A, φ) that contain an uninterpreted variable.

3.2 Simplifications and Reductions
To guarantee an FPL upper bound on the time for MSO model
checking over structures of bounded treewidth, the KLR ap-
proach defines the notion of “equivalent games” and deletes
from each equivalence class all but one representative. More
precisely, consider the EMC game EMC(An, φ) for some
node n ∈ T and two sibling positions in this game, p1 and

2MC problems can be viewed game-theoretically, where two
players – the verifier and the falsifier – move between positions in
the tree. We omit details here and refer to [Grädel, 2007].

3Actually, Kneis et al. [2011] additionally extended EMC games
by specifying some set X of domain elements. However, for our
purposes, the set X always denotes the bag χ(n) at a given node n
of T . We therefore ignore this set X here.

3

p2, corresponding to the MC problem (A, α1) |= ψ and
(A, α2) |= ψ, respectively. Then p1 and p2 are “equivalent”
(denoted as p1 ∼= p2) if there exists an isomorphism h be-
tween B1 and B2 with h(a) = a for all a ∈ χ(n), where Bi is
the structure extending A by adding for each variable inter-
preted by αi an accordingly interpreted constant or relation
symbol to the signature. For two EMC games G1 and G2 with
respective root nodes p1 and p2, we write G1 ∼= G2 if p1 ∼= p2
holds and there exists a bijection π from the subgames of G1
(i.e., the subtrees rooted at the children of position p1) to the
subgames of G2, s.t. G′ ∼= π(G′) for every subgame G′ of G1.

Using this equivalence notion, the KLR approach defines a
reduction procedure which recursively inspects any two sib-
lings in an EMC game G and deletes one of them if they cor-
respond to equivalent games. The desired FPL upper bound
on the size of reduced EMC games is obtained in [Kneis et
al., 2011] by proving that only f(τ, φ) · ||A|| different equiv-
alence classes of subgames of any position in EMC(A, φ)
exist, where f(τ, φ) is a function that depends on formula φ
and treewidth τ of A (but not on the size of A).
From Isomorphism to Equality. The isomorphism-based
definition of equivalence turns out to be a severe obstacle for
the D-FLAT approach since these isomorphism checks are
tedious to realize in ASP. We therefore propose a different
notion of “equivalence” of games. Our crucial observation
is that for evaluating a formula φ it is irrelevant whether in
some node corresponding to the MC problem (An, α) |= ψ
of an EMC game EMC(An, φ) an individual variable is in-
terpreted as some element of dom(An) \ χ(n) rather than
another from this set, provided that both interpretations yield
the same truth values for all subformulas that can so far be
evaluated. In other words, if an individual variable is inter-
preted as some domain element that is only present in bags of
nodes below the current node n during the bottom-up traver-
sal, the precise value of that variable is irrelevant. All that
is relevant is which subformulas this choice makes true or
false. Similarly, once a domain element no longer appears in
the current bag, it need no longer be explicitly stored in the
interpretations of set variables.

We can justify this “forgetful” behavior by the fact that
once individual variables have been assigned a domain ele-
ment, this assignment is never changed. Hence, truth val-
ues of already evaluated subformulas stay the same. It is fur-
thermore guaranteed that the truth values of subformulas that
have not yet been evaluated can still be correctly determined.
For instance, for an atom R(x1, . . . , xk) to have an undeter-
mined truth value under α, at least one variable xi must still
be uninterpreted under α. Now if α interprets another vari-
able xj as some a ∈ dom(An) \ χ(n), then that atom can
never evaluate to true no matter which value from a bag fur-
ther up in the tree decomposition is chosen for xi. The reason
for this lies in the definition of tree decompositions. Suppose
the atom will eventually evaluate to true because there is an
appropriate tuple containing a in the relation R. Then this tu-
ple must jointly occur in some bag – but it cannot have been
below or at n, as then the atom would not have an undeter-
mined truth value. So it must occur in a bag further up in the
tree decomposition. But this contradicts the requirement (3)
of tree decompositions that all nodes whose bags contain a

are connected.
To define an alternative equivalence criterion, we thus re-

place all elements from dom(An) \χ(n) with a new element
“∗”. Moreover, in the interpretation of set variables, we only
keep track of the domain elements contained in the current
bag χ(n). Finally, we memorize the truth values of fully de-
termined atoms in φ. Two EMC games are then equivalent if
they are equal. It is easy to verify that our equivalence crite-
rion allows for more reductions than the equivalence notion
of [Kneis et al., 2011]:

Theorem 1. Let T be a tree decomposition and let n be
a node in T . Whenever two subtrees in the EMC game
EMC(An, φ) are equivalent according to the isomorphism-
based equivalence notion of [Kneis et al., 2011], then they are
also equivalent according to our equality-based equivalence
criterion. The converse is, in general, not true.

3.3 Bottom-up Computation of EMC Games
To evaluate A |= φ, we compute a reduced EMC game Gn
for every node n in a tree decomposition T ofA by means of
a bottom-up traversal of T . The actual evaluation of A |= φ
is done with the reduced EMC game Gr, where r is the root
of G. In contrast to [Kneis et al., 2011], we assume that MSO
formulas are in prenex CNF. Hence, it suffices to keep track
for every clause in the CNF if a literal that evaluates to true
has already been found. We thus consider the clauses in the
CNF as the leaf nodes of our EMC games. The most signifi-
cant deviation from the algorithm of Kneis et al. [2011] is the
different notion of equivalence as described in Section 3.2.
The actual computation of the EMC game EMC(An, φ) will
be detailed in Section 4 when we explain its ASP realization.

Theorem 2. For the MC problem A |= φ, let T be a tree
decomposition of A. Moreover, let EMC(An, φ) denote the
EMC game at a node n and let reduce(EMC(An, φ)) de-
note the reduced EMC game obtained from EMC(An, φ) by
replacing all elements of An \ χ(n) by ∗, removing those
elements from the interpretations of set variables, and then
exhaustively deleting equal sibling subtrees.

Then we can compute in time O(f(τ(T), φ)) the reduced
EMC game reduce(EMC(An, φ)) from the reduced EMC
game(s) at the child node(s) of n in T . Here τ(T) denotes
the width of T and f is a function not depending on ||A||.

Proof sketch. The upper bound on the complexity follows
immediately from the application of the reduce operation at
every node and the fact that only O(f(τ(T), φ)) different re-
duced EMC games can exist. The correctness of the algo-
rithm is proved in several steps: First, we need the correctness
of the reduce operation, i.e., the result of an EMC game is not
altered when deleting from any set of equivalent subtrees all
but one element. We then need to prove for every node type
of the node n in T that the computation of a reduced EMC
game reduce(EMC(An, φ)) from the reduced EMC game(s)
at the child node(s) of n is correct. The proofs for the KLR
algorithm (see Lemma 11 and 12 in [Kneis et al., 2011]) can
be easily carried over to our algorithm based on the altered
equivalence criterion. Finally, we have to show that A |= φ
can indeed be decided by taking the reduced EMC game Gr

4

at the root node r of T , deleting all branches with an uninter-
preted individual variable and evaluating the remaining MC
game. Lemma 13 in [Kneis et al., 2011], which proves the
correctness of this step for the KLR algorithm, again can be
carried over to our setting (in particular, the arguments in that
proof remain valid if we use our equivalence criterion).

4 MSO MC on Tree Decompositions with ASP
We now show that the D-FLAT approach can be applied to
any MSO-definable problem. For this, we first explain how
D-FLAT works – including natural extensions to the origi-
nal framework introduced in [Bliem et al., 2012] that make it
more general. Then we present an encoding for solving MSO
MC with it. Although this encoding could be seen as turning
D-FLAT into a new generic MSO solver, its purpose is rather
to prove the general applicability of D-FLAT.
Extending D-FLAT. In [Bliem et al., 2012] we only consid-
ered problems in NP. Therefore we had to significantly extend
D-FLAT to handle the complexity of MSO MC while keep-
ing the basic methodology untouched. These extensions are,
however, not ad-hoc modifications – D-FLAT as presented
here is generic enough to accommodate all kinds of problems;
in fact all examples from [Bliem et al., 2012] carry over as
special cases.

We equip each node n in a tree decomposition T of an in-
put structure A with a so-called i-tree. By this we mean a
tree where each node is associated with a set of ground terms
called items. D-FLAT executes the user-supplied ASP pro-
gram at each node n ∈ T (feeding it in particular the i-trees
of the children of n as input) and parses the answer sets to
construct the i-tree of n. This basic control flow is depicted
in Figure 1. To keep track of its origin, each i-tree node m is
additionally associated with a set of extension pointers, i.e.,
tuples referencing i-tree nodes from the child nodes of n that
have given rise to m. For instance, if n has k children, the
set of extension pointers of m consists of tuples (p1, . . . , pk),
where each pj is an i-tree node of the jth child of n. This al-
lows us to obtain complete solutions at the end by combining
the item sets along a chain of extension pointers.

As input to the encoding, D-FLAT declares the fact final
if the current node n ∈ T is the root; current(v) for
any v ∈ χ(n); if n has a child n′, introduced(v) or
removed(v) for any v ∈ χ(n) \ χ(n′) or v ∈ χ(n′) \ χ(n),
respectively; root(r) if n has a child whose i-tree is rooted
at r; sub(m,m′) for any pair of nodes m,m′ in a child’s
i-tree, if m′ is a child of m; and childItem(m, i) if the
item set of node m from a child’s i-tree contains the element
i. Finally, D-FLAT also provides the input structure as a col-
lection of ground facts.

The answer sets specify the i-tree of the current tree de-
composition node. To be specific, each answer set describes
an i-tree branch. Atoms of the following form are relevant
for this: length(l) declares that the branch consists of l+ 1
nodes; extend(l, j) causes that j is added to the extension
pointers of the node at depth l of the branch. item(l, i) states
that the node at depth l of the branch contains i in its item set.
All atoms using extend/2 and item/2 with the same depth
argument constitute what we call a node specification.

To determine where branches diverge, D-FLAT uses the
following recursive condition: Two node specifications coin-
cide (i.e., describe the same i-tree node) iff (1) their depths,
item sets and extension pointers are equal, and (2) both are at
depth 0, or their parent node specifications coincide. In this
way, an i-tree is obtained from the answer sets. It might how-
ever contain sibling subtrees that are equal w.r.t. item sets. If
so, one of the subtrees is discarded and the extension pointers
associated to its nodes are added to the extension pointers of
the corresponding nodes in the remaining subtree. D-FLAT
exhaustively performs this action to eliminate redundancies.

Example 3. Listing 2 shows a D-FLAT encoding for IN-
DEPENDENT DOMINATING SET. All i-trees have height 1
(due to line 1); their roots are always empty and their
leaves contain items involving the function symbols in/1
and dominated/1. Suppose D-FLAT currently processes
a forget node. Then there is one child i-tree. Let it consist
of two branches whose respective leaf item sets are ∅ and
{in(a),dominated(b)}. This i-tree is provided to the pro-
gram in Listing 2 by means of the following input facts:
root(r). sub(r,s1). sub(r,s2).
childItem(s2,in(a)).
childItem(s2,dominated(b)).
Each answer set of the program corresponds to a branch in
the new i-tree, and each branch extends one branch from the
child i-tree. The root of the new i-tree therefore always ex-
tends the root of the child i-tree (line 2). Which branch is
extended is guessed in line 3. Lines 4 and 5 retain from the
guess all items that apply to vertices still in the current bag.
(All other items are simply forgotten, ensuring that the size
of each i-tree is bounded by a function depending only on the
decomposition width.) So if the branch with leaf “s2” is ex-
tended and vertex a is forgotten, these lines cause that the
answer set specifies the item dominated(b), but not in(a).

Line 6 enforces the dominance condition. Note that it is not
until a vertex is removed that it can be established to violate
this condition, since as long as a vertex is not removed poten-
tial neighbors dominating it could still be introduced. So, if
instead a vertex c had been forgotten, the constraint in line 6
would eliminate the answer set extending branch “s2”, since
c was neither “in” nor “dominated”.

In introduce nodes, line 7 guesses whether the introduced
vertex is “in” or “out” of the partial solution, and line 8
determines thereby dominated vertices. In line 9, the inde-
pendence condition is enforced. Finally, line 10 ensures that
in join nodes a pair of branches is only extended if these
branches have not made conflicting choices (“in” or “out”)
for any of the common vertices.

When we originally introduced our approach in [Bliem et
al., 2012], we presented a special case of D-FLAT as it is dis-
cussed here. In fact, we used tables instead of i-trees and an
answer set described a table row instead of an i-tree branch,
as tables suffice to implement many dynamic programming
algorithms on tree decompositions (cf., e.g., [Niedermeier,
2006]). D-FLAT as presented here is clearly more general,
since tables can be seen as i-trees of height 1.

D-FLAT Encoding for MSO MC. We now show how EMC
games are represented as i-trees, describe the representation

5

Construct i-tree Compute branches Flatten child i-trees

Parse
instance

Decompose Done?
no

yes

Visit next node
in post-order

Print
solution

Figure 1: Control flow in D-FLAT

1length(1).
2extend(0,R) ← root(R).
31 { extend(1,S) : sub(R,S) } 1 ← extend(0,R).
4item(1,in(X)) ← extend(1,S), childItem(S,in(X)), current(X).
5item(1,dominated(X)) ← extend(1,S), childItem(S,dominated(X)), current(X).
6← removed(X), extend(1,S), not childItem(S,in(X)), not childItem(S,dominated(X)).
7{ item(1,in(X)) : introduced(X) }.
8item(1,dominated(X)) ← item(1,in(Y)), edge(Y,X), current(X).
9← edge(X,Y), item(1,in(X;Y)).
10← extend(1,S0;S1), childItem(S0,in(X)), not childItem(S1,in(X)).

Listing 2: Computing independent dominating sets with D-FLAT

of MSO formulas and finally present our D-FLAT encoding
for MSO MC. For the sake of readability, we only consider
graphs as input structures using the predicates vertex/1 and
edge/2. Our encoding can, however, be easily generalized.

We assume the formula to have quantifier blocks with ∃ at
the outermost level. For an MSO MC problem A |= φ, each
item set represents a position in EMC(A, φ). An item set
at depth l of an i-tree encodes an assignment to the variables
in the lth quantifier block. (Roots of i-trees remain empty.)
Thus, we can associate a (partial) interpretation αb of the ma-
trix of φ with each branch b of an i-tree. Let n be the current
node during a bottom-up traversal of a tree decomposition T
of A. αb assigns ∗ to variables with values not in χ(n), but
we can obtain all possible assignments α+

b without ∗ values
by following the extension pointers.

We only use items of the following form: assign(x, nn)
denotes that αb(x) = ∗; assign(x, v) with v ∈ χ(n)
denotes that αb(x) = v; assign(X, v) denotes that v ∈
αb(X); true(c), which only occurs in leaf item sets, indi-
cates that the clause c is true under α+

b . For any individual
variable x, the absence of any assign/2 item whose first
argument is x means that x is still undefined.

MSO formulas are represented in ASP as follows. A fact
of the form length(i) declares that the number of alternat-
ing quantifier blocks is i. (This will cause each i-tree branch
to have length i.) An individual variable x or set variable X
that occurs in the ith quantifier block is declared by a fact of
the form iVar(i, x) or sVar(i,X), respectively. The MSO
atoms x ∈ X and membership in the edge relation are rep-
resented in ASP as the terms in(x,X) and edge(x, y), re-
spectively. Facts of the form pos(c, a) or neg(c, a) respec-
tively denote that the atom a occurs positively or negatively
in the clause c. For convenience, we have a fact clause(c)
for each clause c, and var(i, x) for each individual or set
variable x in the ith quantifier block.

Listing 3 shows our ASP encoding that is to be executed
at each node n ∈ T to construct the i-tree of n represent-
ing reduce(EMC(An, φ)). We now argue that this yields the
correct result for each node type of n.

If n is a leaf, we guess a valid (partial) variable assign-
ment without any ∗ values (lines 19 and 23) and declare the
appropriate item sets (line 36). Additionally, we add the
clauses that are satisfied by the assignment (cf. rules deriv-
ing true/1) into the leaf item set (line 37). Eventually,
D-FLAT’s processing of the resulting answer sets yields an
i-tree representing the entire EMC game EMC(An, φ).

If n is an introduce node with child n′, we guess a pre-
decessor branch of the i-tree of n′ (lines 14 and 15) whose
assignment is preserved (line 20) and non-deterministically
extended (lines 19 and 23). Satisfied clauses in the predeces-
sor remain so (line 28). Again, clauses that become satisfied
are determined and the appropriate item sets are filled.

If n is a forget node, we also guess a predecessor branch.
We retain each assign/2 item unless it involves the removed
vertex (line 20) and set the value of each individual variable
that was assigned this vertex to ∗ (line 21). Determining sat-
isfied clauses and declaring item sets proceed as before. This
yields an i-tree where the removed vertex is removed from
each set variable and individual variables previously set to
that value are now assigned ∗.

If n is a join node with children n1 and n1, the bags
χ(n) = χ(n1) = χ(n2) are identical. Here, we guess a
pair of predecessor branches (lines 14 and 15). We generate
reduce(EMC(An, φ)) by combining “compatible” positions
(p1, p2), where p1 is a position in reduce(EMC(An1

, φ)) and
p2 is a position in reduce(EMC(An2

, φ)). We define “com-
patibility” of positions as follows. If p1 and p2 are the roots
of the reduced EMC games, they are compatible. Now let
p1 and p2 correspond to the MC problems (A, α1) |= ψ and
(A, α2) |= ψ, respectively, and suppose that the parents of
p1 and p2 are compatible. First suppose that ψ = ∀Y ψ′ or
ψ = ∃Y ψ′. Then p1 and p2 are compatible if α1 and α2

interpret Y identically, i.e., as the same subset of χ(n). For
ψ = ∀xψ′ or ψ = ∃xψ′, the positions p1 and p2 are com-
patible if (1) x is uninterpreted in both α1 and α2, or (2) both
interpret x as the same domain element from χ(n), or (3) one
of α1 and α2 leaves x uninterpreted and the other interprets x
as ∗. Line 25 enforces this compatibility. Note that p1 and p2

6

are incompatible if α1(x) = α2(x) = ∗ (line 24). This is be-
cause ∗ stands for a domain element in the substructure An1

or An2
that does not occur in the bag χ(n1) or χ(n2). By

the definition of tree decompositions, the ∗ value of α1(x)
and the ∗ value of α2(x) thus always stand for distinct el-
ements. Since compatibility is enforced, the two preceding
assignments can simply be unified to yield the assignment of
the new branch (line 20). Now suppose that a branch π in
reduce(EMC(An, φ)) is obtained from branches π1 and π2
in reduce(EMC(An1 , φ)) and reduce(EMC(An2 , φ)), re-
spectively. The set of clauses true along π is simply the union
of the clauses true in π1 and the clauses true in π2 (line 28).

Finally, at the root node of T (which we assume to
be a forget node with an empty bag, cf. Section 2), the
child i-tree nodes are organized with exists/1, forall/1,
invalid/1 and bad/1. The root is an “exists” node because
φ is assumed to start with ∃. Along a branch, “exists” and
“forall” nodes alternate because each non-root node covers
all variables of a quantifier block. A node at depth l is “in-
valid” if it leaves some individual variable in the lth quanti-
fier block uninterpreted, and it is “bad” if the subformula of φ
starting with the lth quantifier block cannot be true. For this
purpose, we start by labeling each non-invalid leaf with “bad”
if it does not report all clauses to be satisfied (line 9). By fol-
lowing extension pointers, it can be verified that none of the
interpretations represented by the respective branch satisfies
the matrix of φ due to our bookkeeping of satisfied clauses.
All leaves that are neither “invalid” nor “bad” conversely cor-
respond to interpretations satisfying the matrix of φ. Using
the alternation of “exists” and “forall” nodes, we then prop-
agate truth values toward the root (lines 10–12): A “forall”
node is “bad” iff one of its children is “bad”, and an “exists”
node is “bad” iff it has only “bad” or “invalid” children. Then
it can be verified that A |= φ holds iff the root of the child’s
i-tree is not “bad”, as can be shown by induction. To ensure
correctness and to only enumerate interpretations without un-
defined individual variables, the guessed predecessor branch
must contain neither “bad” nor “invalid” nodes (lines 16 and
17). We say that D-FLAT accepts the input if the program
executed at the root node has at least one answer set.

Theorem 3. An MSO MC instance A |= φ is positive ex-
actly if D-FLAT, when executed on Listing 3 together with a
declaration of φ, accepts input A.

Proof sketch. We can show by induction that the i-tree of
any n ∈ T below the root of T can be used to construct
MC(An, φ), and that the clauses satisfied by the interpre-
tation corresponding to a branch of MC(An, φ) are exactly
those in the respective leaf item set. If n is the child of the root
node, we obtainMC(A, φ) in this way. If n is the root of T ,
the propagation of truth values in the child i-tree (lines 1–12)
can be shown to correspond to the propagation of truth val-
ues in MC(A, φ). If this propagation finally yields “false”,
line 16 ensures that no answer set exists because the child’s
i-tree root is then “bad”. Otherwise, there is a branch in this
i-tree consisting only of “good” nodes and D-FLAT accepts
the input.

1assignedIn(X,S) ← childItem(S,assign(X,_)).
2% E v a l u a t i o n (on ly i n t h e r o o t)
3itemSet(0,R) ← final, root(R).
4itemSet(L+1,S) ← itemSet(L,R), sub(R,S).
5exists(S) ← final, root(S), sub(S,_).
6exists(S) ← forall(R), sub(R,S), sub(S,_).
7forall(S) ← exists(R), sub(R,S), sub(S,_).
8invalid(S) ← iVar(L,X), itemSet(L,S),

not assignedIn(X,S).
9bad(S) ← length(L), itemSet(L,S),

not invalid(S), clause(C),
not childItem(S,true(C)).

10bad(S) ← forall(S), not invalid(S),
sub(S,T), bad(T).

11bad(S) ← exists(S), not invalid(S),
not good(S).

12good(S) ← exists(S), sub(S,T),
not invalid(T), not bad(T).

13% Guess a b ra nc h f o r each c h i l d node
14extend(0,R) ← root(R).
151 { extend(L+1,S) : sub(R,S) } 1 ←

extend(L,R), sub(R,_).
16← extend(_,S), bad(S).
17← extend(_,S), invalid(S).
18% P r e s e r v e and e x t e n d a s s i g n m e n t
19{ assign(X,V) : var(_,X) } ← introduced(V).
20assign(X,V) ← extend(_,S),

childItem(S,assign(X,V)), not removed(V).
21assign(X,_nn) ← extend(L,S),

childItem(S,assign(X,V)), removed(V),
iVar(L,X).

22% Check t h a t on ly c o m p a t i b l e b r a n c h e s a r e j o i n e d and t h e
r e s u l t i n g a s s i g n m e n t i s v a l i d

23← iVar(L,X), assign(X,V;W), V 6= W.
24← extend(L,S0;S1), S0 6= S1,

childItem(S0;S1,assign(X,_nn)).
25← extend(L,S0;S1), var(L,X),

childItem(S0,assign(X,V)),
not childItem(S1,assign(X,V)), vertex(V).

26% Dete rmine c l a u s e s t h a t have become t r u e
27assigned(X) ← iVar(L,X), extend(L,S),

assignedIn(X,S).
28true(C) ← extend(_,S), childItem(S,true(C)).
29true(C) ← pos(C,edge(X,Y)), assign(X,V),

assign(Y,W), edge(V,W).
30true(C) ← neg(C,edge(X,Y)), assign(X,V),

assign(Y,W), vertex(V;W), not edge(V,W).
31true(C) ← neg(C,edge(X,Y)), extend(_,S),

childItem(S,assign(X,V)), removed(V),
not assigned(Y).

32true(C) ← neg(C,edge(X,Y)), extend(_,S),
childItem(S,assign(Y,V)), removed(V),
not assigned(X).

33true(C) ← pos(C,in(X,Y)), assign(X,V),
assign(Y,V).

34true(C) ← neg(C,in(X,Y)), assign(X,V),
vertex(V), not assign(Y,V).

35% D e c l a r e r e s u l t i n g i t em s e t s
36item(L,assign(X,V)) ← var(L,X), assign(X,V).
37item(L,true(C)) ← length(L), true(C).

Listing 3: MSO model checking with D-FLAT

7

Given an input structure A whose treewidth is below some
fixed integer, one can construct a tree decomposition of A
in linear time. The total runtime for deciding A |= φ for
fixed φ is then linear, since the tree decomposition has linear
size and the search space in each ASP call is bounded by a
constant. Note that this, together with Theorem 2, amounts to
an alternative proof of Courcelle’s Theorem.

5 Conclusion
In this work, we have shown that the ASP-based approach of
D-FLAT can be used to efficiently solve any problem whose
fixed-parameter tractability follows from Courcelle’s Theo-
rem. To this end, we had to (i) adapt the recent game-theoretic
proof of Courcelle’s Theorem from [Kneis et al., 2011], (ii)
extend the D-FLAT system specification we gave in [Bliem et
al., 2012] and (iii) provide a suitable encoding for the MSO
MC problem. All together, this shows that D-FLAT offers
an alternative, purely declarative, way to develop dynamic
programming algorithms on tree decompositions. Since the
D-FLAT approach is centered around the ASP paradigm, our
work provides a novel connection between ASP and funda-
mental methods from parameterized complexity with inter-
esting research perspectives. One example is algorithm syn-
thesis, where dynamic programming algorithms are obtained
from a standard ASP problem description.

References
[Arnborg et al., 1987] Stefan Arnborg, Derek G. Corneil,

and Andrzej Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM J. Algebraic Discrete Methods,
8(2):277–284, April 1987.

[Bliem et al., 2012] Bernhard Bliem, Michael Morak, and
Stefan Woltran. D-FLAT: Declarative problem solving
using tree decompositions and answer-set programming.
TPLP, 12(4-5):445–464, 2012.

[Bodlaender, 1996] Hans L. Bodlaender. A linear-time algo-
rithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

[Courcelle, 1990] Bruno Courcelle. The monadic second-
order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

[Dvorák et al., 2012] Wolfgang Dvorák, Reinhard Pichler,
and Stefan Woltran. Towards fixed-parameter tractable al-
gorithms for abstract argumentation. Artif. Intell., 186:1–
37, 2012.

[Flum et al., 2002] Jörg Flum, Markus Frick, and Martin
Grohe. Query evaluation via tree-decompositions. J. ACM,
49(6):716–752, 2002.

[Gebser et al., 2010] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Max Ostrowski, Torsten Schaub, and
Sven Thiele. A user’s guide to gringo, clasp, clingo,
and iclingo. Preliminary Draft. Available at http://
potassco.sourceforge.net, 2010.

[Gelfond and Leone, 2002] Michael Gelfond and Nicola
Leone. Logic programming and knowledge representation

– the A-Prolog perspective. Artif. Intell., 138(1-2):3–38,
2002.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Comput., 9(3/4):365–386, 1991.

[Gottlob et al., 2010] Georg Gottlob, Reinhard Pichler, and
Fang Wei. Bounded treewidth as a key to tractability
of knowledge representation and reasoning. Artif. Intell.,
174(1):105–132, 2010.

[Grädel, 2007] Erich Grädel. Finite model theory and de-
scriptive complexity. In Finite Model Theory and its Ap-
plications, pages 125–230. Springer, 2007.

[Klarlund et al., 2002] Nils Klarlund, Anders Møller, and
Michael I. Schwartzbach. MONA implementation secrets.
Int. J. Found. Comput. Sci., 13(4):571–586, 2002.

[Kloks, 1994] Ton Kloks. Treewidth: Computations and Ap-
proximations, volume 842 of LNCS. Springer, 1994.

[Kneis et al., 2011] Joachim Kneis, Alexander Langer, and
Peter Rossmanith. Courcelle’s theorem – a game-theoretic
approach. Discrete Optimization, 8(4):568–594, 2011.

[Langer et al., 2012] Alexander Langer, Felix Reidl, Peter
Rossmanith, and Somnath Sikdar. Evaluation of an MSO-
solver. In Proc. ALENEX, pages 55–63. SIAM / Omni-
press, 2012.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang
Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The DLV system for knowledge rep-
resentation and reasoning. ACM Trans. Comput. Log.,
7(3):499–562, 2006.

[Marek and Truszczyński, 1999] Victor W. Marek and
Mirosław Truszczyński. Stable models and an alternative
logic programming paradigm. In The Logic Program-
ming Paradigm: A 25-Year Perspective, pages 375–398.
Springer, 1999.

[Niedermeier, 2006] Rolf Niedermeier. Invitation to Fixed-
Parameter Algorithms. Oxford Lecture Series in Math-
ematics And Its Applications. Oxford University Press,
2006.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable
model semantics as a constraint programming paradigm.
Ann. Math. Artif. Intell., 25(3-4):241–273, 1999.

[Pichler et al., 2009] Reinhard Pichler, Stefan Rümmele, and
Stefan Woltran. Belief revision with bounded treewidth. In
Proc. LPNMR 2009, pages 250–263, 2009.

[Samer and Szeider, 2010] Marko Samer and Stefan Szeider.
Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010.

8

