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Abstract

Since argumentation is an inherently dynamic process, it is
of great importance to understand the effect of incorpogati
new information into given argumentation frameworks. In
this work, we address this issue by analyzing equivalenee be
tween argumentation frameworks under the assumption that
the frameworks in question are incomplete, i.e. furtheorinf
mation might be added later to both frameworks simultane-
ously. In other words, instead of the standard notion ofvequi
alence (which holds between two frameworks, if they pos-
sess the same extensions), we require here that frameworks
F andG are also equivalent when conjoined with any further
frameworkH . Due to the nonmonotonicity of argumentation
semantics, this concept is different to (but obviously iieg)

the standard notion of equivalence. We thus call our new no-
tion strong equivalence and study how strong equivalenae ca
be decided with respect to the most important semantics for
abstract argumentation frameworks. We also consider vari-
ants of strong equivalence in which we define equivalence
with respect to the sets of arguments credulously (or skepti
cally) accepted, and restrict strong equivalence to autgren
tions H where no new arguments are raised.

Introduction
In Artificial Intelligence, the area of argumentation (see
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of argumentation makes equivalence a subtle property. Let
us have some motivating examples to illustrate this.

To start with, consider the following two frame-
workst F' = ({a,b,c},{(a,b), (b,¢),(c,a)}) and G =
({a7 b) C}? {(b? a)7 (a’? C)? (07 b

which are equivalent under most of the known seman-
tics. Let us use the preferred semantics here, which selects
maximal conflict-free and self-defending sets of arguments
(a formal definition is given in the next section). Then,
both frameworks have the same unique preferred extension,
namely the empty set. However, if we add a new argument
which attacks, the situation becomes different:

T~
®

If we let H = ({b,d},{(d,b)}), the AF on the left can be
considered as the “union” df andH which we will denote
FUH, slightly abusing notation. The AF on the rightis then
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(Bench-Capon and Dunne 2007) for an excellent summary) G U H. However,F' U H andG U H are not equivalent. In
has become one of the central issues during the last decadefact, {c, d} is the unique preferred extension Bfu H and

with abstract argumentation frameworks (AFs, for short) {a,d} is the unique preferred extension@fJ H. However,

as introduced by Dung (1995) being the most popular for- it is not even necessary to add a new argument to make this
malization on the conceptual level of argumentation. In a implicit difference betweert” andG explicit. Consider now
nutshell, such frameworks formalize statements (in génera H' = ({a,b},{(a,b)}). ThenF U H" andG' U H' are

such statements can be inferential structures themsebres)

gether with a relation denoting conflicts between them, and
the semantics gives an abstract handle to solve these imthere
conflicts between statements by selecting admissible sibse
of them. A number of papers compared and investigated
properties of the different semantics which have been pro- _ = .
posed for such frameworks (see, e.g. (Baroni and Giacomin 1 NiS leads us towards definitions for stronger variants of
2009) and the references therein). However, the concept of €auivalence. As the central notion we want to study in this
equivalence between two frameworks has not received that Paper, we definstrong equivalencebetween two AFs”

much attention yet, although the inherent nonmonotonicity 2NdG as the problem of deciding wheth&rand G remain

and we obtainthakUH’ = F hasthe empty set as preferred
extension, whilga} is the preferred extension 6f U H'.

*This work was supported by the Vienna Science and Technol- We assume a bijective relation between statements and their

ogy Fund (WWTF), grant ICT08-028.
Copyright(©) 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

names.

2\We follow terminology as used in other KR formalisms, in par-
ticular, logic programming (Lifschitz, Pearce, and Vable2001).



equivalentunder any extensions of the two AFs, i.e., whrethe e We then study some variants of strong equivalence. In
for each further AFH, FF U H andG U H are equivalent. particular, we consider strong equivalence when defined
The study of such an equivalence notion is motivated by the over credulously and respectively skeptically acceptgd-ar
following observations: ments. Interestingly, in nearly all semantics this concept

« Implicit vs. explicit information:as we have seen in the ~ duces to the corresponding standard notion of strong equiv-

example above, the two frameworks store different informa- &l€nce-

tion. However, the semantics do not make this difference e Finally, we weaken the concept of strong equivalence by
visible, unless the AFs are suitably extended, i.e. some new considering only augmentation of frameworks which do not

information is added. Strong equivalence can thus be under- add any new arguments to the compared frameworks. While
stood as a property which decides whether two argumenta- this restriction (which we call local equivalence) has no ef

tion frameworks provide the same implicit information.

e Replacement propertyn classical logics, the replacement
theorem states that a subformulaan be faithfully replaced

in any theoryT by a subformulay, in case¢ and are
equivalent. By a faithful replacement we mean here, that the
models ofT" are not changed by this replacement, Teis
equivalent toT'[¢/«]. Again, our example shows that ar-
gumentation does not satisfy the replacement property (the
same holds for other nonmonotonic formalisms). However,
the replacement property is a central condition for simpli-
fications. If we consider strong equivalence, we obtain a
replacement property for argumentation frameworks. Note
that strong equivalence thus gives us a handle on local sim-
plifications, i.e. simplifying parts of a framework without
looking at the entire framework.

e Dynamics of argumentatiorthe process of argumentation
is dynamic and evolving with time (Rotstein et al. 2008b).

fect for admissible, preferred, ideal, and semi-stablessem
tics, it leads to some subtleties for the other semantics.

The paper is organized as follows. First, we introduce
the necessary background for abstract argumentation frame
works and the semantics we consider here. The third section,
which is the main part of this work, contains our characteri-
zation theorems for strong equivalence.Then, we look at the
notion of strong equivalence when defined with respect to
acceptability, and introduce the aforementioned concépt o
local equivalence. We conclude the paper with a discussion
of related work and give pointers to open problems.

Preliminaries

We consider a fixed countable gétof arguments. An ar-
gumentation framework (AF) is a pif, R) whereA C U
is a finite set of arguments aédl C A x A represents the
attack-relation. For an AF" = (B,S) we useA(F) to

In other words, during an argumentation process it is natu- refer to B and R(F) to refer toS. When clear from the
ral that new arguments are raised, which then attack or are context, we often write: € [ (instead ofa € A(F")) and
attacked by already existing arguments. As well, it mightbe (a,b) € F' (instead of(a,b) € R(F)). For two AFsF and
the case that we learn that two existing arguments are in an G, we define the uniof” U G and intersection” N G as
attack-relation, which we were not aware of before. This all expected, i.eF'U G = (A(F) U A(G), R(F) U R(G)) and
leads to the necessity to understand the semantics also forf’NG = (A(F)NA(G), R(F)N R(G)). We write '\ G to
incomplete argumentation frameworks. Strong equivalence denote(A(F), R(F') \ R(G)). Likewise, we writeF' C G
provides new theoretical insight wrt. this aspect, which, incaseA(F) C A(G)andR(F) C R(G). o
we believe, complements results about the revision of AFs ~ Foran AFF = (A, R) andS C A, we say that (i)S is
(Cayrol, Dupin de Saint-Cyr, and Lagasquie-Schiex 2008; conflict-freein F" if there are nau, b € S such that(a, b) €
Falappa, Kern-Isberner, and Simari 2009). R; (i) a € Ais defeateddy S in F if there isb € S such

indeed. th b i i lusive t that(b,a) € R; and (iii) a € A is defendedy S in F if for
tation; the study of differentequivalence notions hasaalye | S2CH € A with (b,a) € R, bis defeated by in F. Note
L y Ol q . A that an argument with (a,a) € F cannot be defended by a
received attention in ot_her (n_onm_onotonlc) formalisms for conflict-free set
gggvl\’_leru%?]grez[)eosfn_f_?ﬂggcg";ssi? ';Zdogaﬁg\’/vgcgrv%?zg Semantics for argumentation frameworks are given via a
' o y : ' functiono which assigns to each AF = (A4, R) a setS C
stract argumentation we are not aware of such results.

_ S . 24 of extensions. We consider herec {s,a,p,c,g,i,ss}
Our main contributions are summarized as follows: for stable, admissible, preferred, complete, groundeshlijd

e We provide characterizations how to decide strong and respectively, semi-stable extensions (Dung 1995; Dung
equivalence with respect to the semantics as defined by Mancarella, and Toni 2007; Caminada 2006).

Dung (1995), as well as semi-stable (Caminada 2006) and Definition 1 Let F = (A, R) be an AF andS C A.

ideal semantics (Dung, Mancarella, and Toni 2007). Our
][esults _show that strong gquivalenc_e wrt. admissit_)_le, Pre- ~ free inF and eachy ¢ A \ S is defeated by in F.
erred, ideal, and respectively, semi-stable semantigs co : . ) . o
cides, while the remaining semantics (stable, groundetl, an ® IS anadmissibleextension of”, i.e., 5 € a(F), if 5 is
complete) yield different notions of strong equivalence. | conflict-free inf” and each: € S'is defended by in F-.
the case of self-loop free AFs, our results are even stronger ® S is a preferredextension off', i.e., S € p(F), if S €
here, strong equivalence for all considered semantics re- a(f") and foreachl’ € a(F’), S ¢ T.

duces to syntactical equivalence (i.e., the compared AFs e S is a completeextension off’, i.e., S € c(F), if S €
have to be exactly the same). a(F) and for eachu € A defended by in F', a€S holds.

e Sisastableextensionof’, i.e.,S € s(F), if S'is conflict-



e S is agroundedextension off, i.e., S € g(F), if S € The next example presents AHES and G, for which
c(F), and for eachl’ € c¢(F), T ¢ S. o(F)=0(G) = a(F) = a(G), o € {s,p,i,c, g, ss}.

e Sis anidealextension of’, i.e.,S € i(F), if S € a(F), Example 2 Let F and G be the following AFs:
S € Nrepr) T and for eachl/ € a(F), such thatl/ C

Nrepry T25 2 U. OO (}*/@\
e S is asemi-stablextension of, i.e., S € ss(F), if S €
a(F), and for eachl’ € a(F), R*(S) ¢ R*(T), where @’—’@—* <_—@

RT(U)=UU{b](a,b) € Ria€ U}, Since bothF andG are acyclic, we have(F) = o(G) =
Itis well known that foro € {a, p, ¢, g, i, ss}, and any AFF, {a,c,e} foro € {s,p,i,c,g,ss}. However{a,c} € a(F),
o(F) # 0 (recall that we deal with finite AFs); only stable  but{a,c} ¢ a(G). Thus,o(F) = o(G) #= a(F) = a(G).
semantics may yield an empty set of extensions. Moreover, e now show that for < {a,p,c,g,i} andd € {s,ss},

for o € {g.,i}, and any AFF, o(F') contains exactly one o(F) = o(G) = 0(F) = 6(G) does not hold in general.
extension. The grounded extensions of an/AE (4, R), .
Example 3 Let F' and G be as follows:

is given by the least fixed point of the operafts : 24 —
24, wherel'»(S) = {a € A | ais defended by in F}. m -
Also the following relations hold, for each AF: @ Q e @ Q e’

s(F) C ss(F) C p(F) C ¢(F) C a(F). 1) We havea(F) = c(F) = a(G@) = ¢(G) = {@, {a},{b}}.

, Howevers(F) = {{b}} ands(G) = {{a}, {b}}. Hence,
In cases(F) # 0, s(F) = ss(F) holds (Caminada 2006)  vja Proposition 1, we thus obtain(F) = o(G) #=
for finite AFs. Moreover, the ideal extension bfis also a s(F) = s(G), foro € {a,c,p,g,i}. Sinces(F) # § #
complete one (Dung, Mancarella, and Toni 2007). s(G), our observations immediately extend to semi-stable
When comparing frameworks, the picture becomes more gemantics.

opaque. Interestingly, we only have a few relations between

the different semantios. Next, we present an example due to Dunne (2009) to show

o(F) =0(G) &= 0(F) = 0(G), foro € {p,g,s,ss} and
Proposition 1 For any AFsF, GG, we have 6 c {a,c,i}.

a(F) =alG 0(F)=0(G), ford € {p,i}; .
gzgng)) - 3(((;)) z 9((F)) - 9((G)), ford o %{57 il,}g}. Example 4 Let nowF andG be as follows:

Proof We show the claim fof = p; the other cases are @ @ G @
similar. Leto € {a,c} and assume (F) = o(G) but
p(F) # p(G). Wlog. letS € p(F)\ p(G). Then,S € o(F)

(p(F) C o(F) holds for all AFSF’), andS € o(G) (by as-

sumption). Since preferred extensions are maximal, for all ~ We hav% = g( = {@} p(F) =p(G) =s(F) =

S € o(G) there isS’ € p(G) such thatS C S’. Since s( G = ss( F = ss(G) = {{a,d},{b,d}}. However,
S ¢ p(G), there isS’ € p(G) such thatS C S’. Recall that i(F) = {0} and (G) = {{d}} since{d} is admissible for
p(G) C 0(@), and henc&’ € o(G). Sinceo(F) = o(G), G, and not forF. Thus{d} is not a complete extension of
S’ € o(F). Butthisis in contradiction witlt € p(F). O F, but it is a complete extension 6f (recall that the ideal

None of the other relations hold (even if we restrict to  €Xtensionis alwarys a complete exteneion as well).
comparisons between AFs which are given overthe same ar- We now provide an example which showsF) =
guments) as witnessed by the following collection of counte  o(G) #= p(F) = p(G), for o € {s, ss, g, i}.

eX_él}hmIO']ces- e sh hat th <t AFsand & Example 5 Consider heré” andG are given as follows:
e first example shows that there exist AFsand G,

such thato(F) = o(G) #= 0(F) = 6(G), whereo € @ @
{s,ss,a,p,i} andd € {g,c}. We havess(F) = = ss(G) = s(G) = {{b}},
Example 1 Let F andG be the following AFs: but different preferred extensrons ViLF) = {{a} {b}},

p(G) = {{b} {c}}. Inturn,i(F) = i(G) = {0}, and also

@’:—»\((D @K\QD g(F) = g(G) = {0} is evident. Thus, the desired relations

follow.
We havea(F) = a(G) = {0, {b}} ands(F) = ss(F) = The final example shows that stable equivalence and semi-
s(G) :_ss(G) = {{b}}. Howeverf) is a complete extension  giopie equivalence are incomparable.
of F' (since each argument faces at least one attack), while
this is not the case fo€ (whereb is thus defended by the ~ Example 6 LetF, G, and H be as follows
empty set), i.e{b} is the only complete extension@f As @ M “
well, we obseer{ve} that is the grounded extension &fand @ @ e @ e
{b} is the grounded extension 6f Thus, we have’(F) = We havess(F) = ss(G) = {{b}} and ss(H {0}
o' (G) #= O(F) = 0(G) for o’ € {s,ss,a} andd € {g, c}. moreovers(F) = s(H ) = 0 ands(G) = {{b}} Hence,
By Proposition 1, we can extend this observation to cover ss(£') = ss(G) #= s(F) = s(G) ands(F) = s(H) #=
ideal and preferred semantics, as well. 55( ) =ss(H).



Strong Equivalence

As a first novel notion to compare AFs we consider the fol-
lowing concept which we call strong equivalence (wrt. a
given semantics).

Definition 2 Two AFsF and G are strongly equivalento
each other wrt. a semanties in symbolsF' =7 G, iff for
each AFH, o(F U H) = ¢(G U H) holds.

By definition, we have that" =2 G implieso(F) =
o(G), i.e. standard equivalence between wrt. However,
the converse direction does not hold in general.

Example 7 Recall the frameworks from the introduction
F = ({aa bv C}a {(av b)a (bv C)a (Cv CL)}) and
G = ({a,b,c},{(a,c),(c,b),(b,a)}).

Theno(F) = o(G) = {0}, foro € {a,p,c,g,i,ss}. More-
over,s(F) = s(G) = (. ConsiderH = ({b,d},{(d,b)}),
with d being a fresh argument different fromb, c. Then,
{¢, d} is the only stable extension 6fU H, while {¢, d} ¢
a(G U H). Inspecting the relations iifl), we can con-
cluded’(F U H) # ¢/(GU H), for o’ € {s,ss,p,c,a}.
By definition,F’ 7_&;" G. It remains to check ideal strong-
equivalence and grounded strong-equivalence. In fact, w
havei(F U H) = p(F U H) = {{c,d}} # {{a.d}} =
p(GUH)=i(GUH),aswellag(FUH) =c(FUH) =
{{c,d}} # {{a,d}} = c(GU H) = g(GUH).

Let us mention at this point, that the notion of conflict-

freeness is not responsible for the behavior observed above

In fact, for AFSF, H, and a seb of arguments, the follow-
ing propositions are equivalent: (#)is conflict-free in both
FandH; (ii) Sis conflict-free inf'UH. We thus can imme-
diately conclude that for AF8, G with A(F') = A(G), the
following holds: F' andG have the same set of conflict-free
sets iff ' U H andG U H have the same set of conflict-free
sets, for any AH{.

D

Example 8 Let F' = ({a,b},{(a,a),(a,b)}). We have
s(F) = 0. However, also fort™* = ({a,b},{(a,a)}),

we haves(F*%) = (). As another example, considér =

({a,b},{(a,a),(a,b), (b,a)}). Here,s(G) = {{b}}. Note
that alsoG*" = ({a, b}, {(a,a), (b,a)}) possesse$b} as
its only stable extension.

Indeed, the above observation follows a general principle,
which we show next.

Lemmal Forany AFF, s(F) = s(F*").

Proof First observe that, for each s&t S is conflict-free
in £ iff S is conflict-free inf***. Moreover, for each such
conflict-free setS and eachu € A, a is defeated bys in
Fiff ais defeated bys in F** (if a is defeated bys in F,
there existd € S, such thatb,a) € F. Sinceb € S and
S is conflict-free inF, we get(b,b) ¢ F. By definition,
(b,a) € F*". The if-direction follows from the observation
thatR(F*") C R(F)). The claim follows now easily. O

The next technical lemma shows that the notion ofan
kernel is robust wrt. composition of AFs.

Lemma 2 LetF andG be AFs, such that’™s® = G**. Then,
(FUH)* =(GUH)* forall AFS H.

Proof Suppose™~ = G~ and let(a,b) € (F U H)**. We
show(a,b) € (G U H)**. Since(a,b) € (F U H)** we
know that(a,a) ¢ F U H. Thus,(a,a) ¢ F**, (a,a) ¢
G=* (by assumptiorf™® = G**), and(a,a) ¢ H**. Now,
since(a,b) € (F U H)*, (a,b) € F*" or (a,b) € H*".
In case(a,b) € H®", (a,b) € (G U H)*" follows since
(a,a) ¢ G*" (thus,(a,a) ¢ GU H). In case(a,b) € F*",
we get by assumptiof** = G**, that(a,b) € G**, and
since(a,a) ¢ H*", (a,b) € (G U H)** follows. The other
direction is symmetric. O

We proceed with our first main theorem and show that
syntactical equivalence of-kernels characterizes strong

In the subsequent sections, we provide characterizations duivalence betweef andG wrt. stable semantics.

for strong equivalence wrt. the different semantics we con-

sider. For all cases we will provide syntactical criterideth
we callkernels The idea is that (syntactical) equivalence of
kernels characterizes strong equivalence wrt. the coreside
semantics.

Strong Equivalence wrt. Stable Semantics

Our first goal is to identify attacks which do not contribute
when computing stable extensions of an AF Indeed, we

Theorem 1 For any AFsF andG: F** = G** iff F' =3 G.

Proof SupposeF* = G** and letH, S s.t.S € s(F U H).
We showS € s(G U H). By Lemma 1,S € s((F U H)*")
and we get from Lemma & € s((G U H)®**). Thus,S €
s(G U H), again by Lemma 1. By symmetry and definition
of strong equivalence, we gét* = G** implies F' =% G.

For the converse direction, suppaB& # G*. We show
F #£3 G. First, we consider the cas&(F*") # A(G®").

need to find attacks which do not contribute in the evaluation This impliesA(F') # A(G) by the definition of an-kernel.
of F, no matter howr is extended. Since stable semantics WIog. leta € A(F)\ A(G). We useB = (A(F)UA(G))\
are solely based on conflict-free sets and attacks, a goed can {a}, andc as a fresh argument. Consider

didate for such “useless” attacks are pdirsh) where also

(a,a) is contained in the attack-relation. H = (BU{c},{(c.0) | be B}).

Definition 3 For an AFF = (A, R), we define the-kernel
of ' as F*" = (A, R*") where
B =R\ {(a,b) | a # b, (a,a) € R}.

A few properties are clear by definition and are implicitly
used later on: for each AF and eactu € A(F), A(F) =
A(F**), R(F) 2 R(F*"), and(a,a) € F iff (a,a) € F" .

Suppose now; is contained in som§ € s(F'U H). Then,
we are done since cannot be contained in ary/ € s(G U
H), sincea ¢ A(GU H). Otherwise, we extentf to H' =

H U ({a},0). Then{a, c} is the unique stable extension of
G U H'. On the other hand, observe tifatV H' = F U H,
hence by assumption,is not contained in any € s(F U
H') ors(F U H’) is empty. In both cases, we gBtZ3 G.



Now supposeA(F**) = A(G**). Then, we have (a) F?* =G
R(F®r) R(G**). Wilog. assume there exists some (b) F =2 @
(a,b) € R(F*")\ R(G®"). We define () F :ss e

H = (A(F),{(a,c) | c€ A(F)\{a,b}}). (d) FEEG
(e) F=L G

Leta = b (thus(a,a) € R(F) and(a,a) ¢ R(G)). Then,
{a} & s(F'U H) (since{a} is not conflict-free inF" U H)
and{a} € s(G U H) (sincea attacks all other arguments
in G U H). Hence, in what follows we can assume that any
self-loop is either contained in bofR(F*~) and R(G*~) or

in none of them. Let us thus now considerZ b. Since
(a,b) € F*=", it holds that(a,b) € F, (a,a) ¢ F, and,
furthermore, we now can assume tlfata) ¢ G. Now,
{a} € s(F U H) (sincea attacks all other arguments) and
{a} ¢ s(G U H) (sinceb is not defeated bya} in G U H;
recall that(a,b) ¢ R(G*") and since(a,a) ¢ R(G), we
also havea, b) ¢ R(G)). Thus,F #5 G follows. O

Strong Equivalence wrt. Admissible, Preferred,
Ideal and Semi-Stable Semantics

We now provide a slightly more restrictive notion of a ker-
nel, which turns out to serve as a uniform characterization
for strong equivalence wrt. four different semantics

Definition 4 For an AFF = (4, R), we define tha-kernel
of F'asF?" = (A, R*) whereR?" is given as

R\ {(a,b) | a #b,(a,a) € R,{(b,a), (b,b)} N R # 0}.

The following properties also hold for the notion of an
a-kernel: For each ARF' and each argument, A(F) =
A(F?%), R(F) D R(F?%), and(a,a) € Fiff (a,a) € F?~.

Example 9 We first show that the notion of-kernels
following Definition 3 is too weak to capture equiv-
alence wrt. admissible extensions. Recall AF =
({a,b},{(a,a), (a,b)}) from Example 8. We clearly have
a(F) = {0}. However forf** = ({a,b},{(a,a)}), we
now havea(F**) = {0, {b}}. For another example, con-

siderG = ({a,b},{(a,a),(a,b), (b,a)}), which has as an
a-kernel G** = ({a,b},{(a,a),(b,a)}). One can check
thata(G) = {0, {b}} = a(Ga”).

Concerning the relationship between saskernel and an
a-kernel, we obviously havé=" C F?* for each AFF'. A
stronger relation between the two notions is as folldws:

Lemma 3 Forany AFsF, G, F2*= G?* impliesF**= G*~.

We now give the two important properties a notion of a
kernel has to fulfill (cf. Lemmas 1 and 2 for the stable case).

Lemma 4 For any AFF, o(F)=0c(F?%) (o € {a, p,i,ss}).

Lemma 5 If F2* = G?*, then(F U H)** = (GU H)?" for
all AFs H.

Interestingly, syntactical equivalence efkernels cap-
tures strong equivalence wrt. four different semantics.

Theorem 2 The following propositions are equivalent for
all AFs F andG:

3From now on, we will omit some proofs due to limited space.

Proof (a)=-(b) and (a}-(c): Similar as in the proof of The-
orem 1 using Lemmas 4 and 5.
(b)=(d) and (b}>(e): Supposd’ =2 G, and letH be any
AF. By definition,a(F U H) = a(G U H), and by Proposi-
tion 1,0(FUH) = 0(GUH), forf € {p,i}. ThusF =% &
follows.
(c)=(a), (d)=(a), and (ex-(a): Letd € {p,i,ss}. Suppose
F3r £ Ga®. We showF #Y G. In cased(F*) # 0(G")
we are done (by Lemma 4, we g&tF’) # 6(G) and thus
F #9 G). In what follows, we thus assuntéF) = 6(G).
First consider the cas&(F2~) # A(G®"). By definition
of ana-kernel thenA(F') # A(G). Wilog. leta € A(F) \
A(G). Sincea ¢ A(G), we haven ¢ S for eachS € 0(G),
and thus, sincé(F) = 6(G), a ¢ S’ for eachS’ € 0(F).
LetH = ({a},0). Clearly, FUH = F and thug(FUH) =
6(F). Onthe other hand, € S foranyS € 0(GUH). This
can be seen as follows: First,e S foranyS € p(G U H),
sinceq is not attacked iy U H. Hencega € S forany S €
ss(G U H) (sincess(I) C p(I), for any AFI). Moreover,
we have{a} € a(G U H) anda € (\gcpqum S- Thusa
has to be contained in the ideal extensiod:af H, as well.
Now supposed(F2") = A(G?*F), i.e. A(F) = A(G).
Thus wlog. there exists sonfe,b) € R(F?~) \ R(G).
Let B = A(F)\ {a,b}. First, assume = b. We define

H = (A(F),{(a,c), (c,c) | ce B})

and obtaif FUH)** = (A(F),{(a,a)}U{(c,¢) | c € B})
and(G U H)** = (A(F),{(a,c),(c,c) | ¢ € B}). Thus,
() is the only preferred extension ¢# U H)* (since it
is the only conflict-free set here) ada@} is the only pre-
ferred extension off U H (sincea attacks all its attack-
ers andz does not attack itself by the assumption). We ob-
tain p((F' U H)**) # p((G U H)**). Note that for an AF
which possesses a unique preferred extensiof has to
be also the unique semi-stable extension (in case, the AF
is finite, which is the case here), and the ideal extension.
Hence6((F U H)**) # 6((G U H)?*), and by Lemma 4,
O(FUH) #0(GUH) (for 0 € {p,i,ss}).

Hence, in what follows we can assume that any self-loop
is either contained in bot®(F*) and R(G?*) or in none
of them. Let us thus now consider# b. We continue our
proof by different cases for the presence of attack:). If
(a,a) ¢ R(F?"), we define

H = (A(F).{(b, ), (5:0)} U{(a,0), (c.¢) | ¢ € BY).

It can be checked that{ F U H) = {{a}} andp(GU H) =
{0}. By the same observation as abo¥ef’ U H) # 6(G' U
H), for 6 € {p,i,ss}. If (a,a) € R(F?"), we proceed as
follows. Since(a,b) € F2~, it holds that(b, b) ¢ R(F?")
and(b,a) ¢ R(F?"). We define

H = (A(F),{(b,¢),(¢,c) | c € B})



and obtaind(F U H) = {0} while §(G U H) = {{b}}.
Hence, in all cases there is an A&F, such that(F U H) #
6(G U H). By definition of strong equivalence, we arrive at
F #9 G (for 6 € {p,i,ss}). O

Strong Equivalence wrt. Grounded Semantics

We next consider the grounded semantics and require a fur-

ther kernel.

Definition 5 For an AFF' = (A, R), we define thg-kernel
of I’ as F&* = (A, R&") whereRe" is defined as

R\ {(a,b) | a #b,(b,b) € R, {(a,a), (b,a)} N R # 0}.

As for our previous kernels, these properties also holgfor
kernels:A(F) = A(F&*), R(F) 2 R(F®"), and,(a,a) €
F iff (a,a) € F&"~, for each AFF and each argument

As regards to the relation of thg-kernel to our
other kernels, we notice thaf8® is incomparable
with both F?® and F** in general. For instance,

for AF G = ({a,b},{(a,a),(a,b),(b,a)}), we have

G# = ({a,b},{(a,a),(a,b)}) and G*r = G —

({a b}, {(a,a), (b,a)}). Thus bothGe" Z G** = G** and
=G ¢ G8&"

However we observe an interesting symmetry between
kernels ang-kernels. In fact, for any AF" anda, b which
are not both self-attackinda,b) € F \ F2~ iff (b,a) €
F\ F&%. However, in case both andb are self-attacking,
(a,b) € F\ F?*iff (a,b) € F'\ F®".

Also g-kernels satisfy similar properties as we have
shown for other kernels before.

Lemma 6 Forany AFF, g(F) = g(F&").

Lemma 7 If F'8" = G8&", then(F U H)&" = (G U H )&" for
all AFs H.

We proceed to show that-kernels characterize strong
equivalence wrt. the grounded extensions.

Theorem 3 For any AFsE andG: F&r = G&* iff I =28 G.

Proof The only if-direction is similar as in the proof of
Theorem 1 using Lemmas 6 and 7.

For the if-direction, supposé'® =% G&°. In case
g(F&") # g(G&") we are done since, by LemmagiF) #
g(G) which obviously impliesF’ #& G. In what follows,
we thus assumg(F) = g(G).

First consider the casé(F&~) # A(G&"). By definition
this holds, iff, A(F') # A(G). Wlog. leta € A(F) \ A(G).
Sincea ¢ A(G), we haven ¢ S for S € g(G) = g(F). Let

= ({a},0). Clearly,F U H = F and thug(F U H) =
g(F). On the other hana; € S’ for S’ € g(G U H), since
there is no attack oa in G U H. ConsequentlyF’ #¢ G.

Now supposeA(Fe&") = A(G#"), i.e. A(F) = A(G).
Thus wlog. there exists sonfe,b) € R(F&%)\ R(G&").
Let ¢ € U be a new argument not contained A{F’) and
B = A(F) \ {a,b}. Assuminga = b, i.e,, (a,a) € F
and(a,a) ¢ G, letH = (BU {c},{(c,d) | d € B}).
Then{c} € g(FUH) (cis defended by in FUH; no other
argumentis defended Hy:} in FUH) and{c} ¢ g(GUH)
(c is defended by in G U H anda is defended by{c} in

G U H). Hence, we can assume that any self-loop is either
contained in botlF andG or in none of them.
Leta # b. Since(a,b) € R(F®~), (a,b) € R(F) and
,b) ¢ R(F); or (a,a) ¢ R(F) and(b,a) ¢ R(F). If

, ) ¢ R(F), then also(b,b) ¢ R(G). Moreover, since
a,b) ¢ R(G&"), also(a,b) ¢ R(G). Again, letc € U be
a new argument not contained W(F) andB = A(F) \
{a,b}. We take

H = (A(F) U{c},{(a,a), (b;a)} U{(c,d) | d € B}).

Now, {c¢} € ¢(F U H) andd & c(F U H). Thus,g(F U
H) = {{c}}. On the other handc} ¢ c(G U H) and thus
{c} ¢ g(GU H). If (b,b) € R(F), then(b,b) € R(G),
(a,a) ¢ R(F), (a,a) ¢ R(G), and(b,a) ¢ R(F'). We take

H = (A(F) U{e.c}. {(c.d) | d € B} U{(b.e)}).

wheree is a new argument not contained i#(F") U {c}.
Now,g(F U H) = {{a,c,e}} whileg(GU H) = {{a,c}}
if (b,a) ¢ G, andg(GU H) = {{c}}if (b,a) € G. Thus
F #& G follows. O

(b
(b

Strong Equivalence wrt. Complete Semantics

Finally, we introduce a kernel characterizing strong eguiv
lence wrt. complete semantics. We notice that wrt. complete
extensions, attack, b) for which both arguments are self-
attacking are irrelevant, since neithemor b can ever be
defended with any conflict-fre§.

Definition 6 For an AFF = (A, R), we define the-kernel
of FasF< = (A, R") where

R =R\ {(a,b) | a # b, (a,a),(b,b) € R}

Concerning the relationship betweetrkernel and the other
notions of kernels introducedi™® C F?¢ C F<* and
Fes C F< hold for any I (recall thatF&" is incompa-
rable with bothFs* and F2%). Similarly to Lemma 3 there
is also a stronger relation between the notions.

Lemma 8 For any AFsF andG, F = G~ impliesF™ =
G7 for t € {sk,ak,gk}.

In fact, there is stronger relationship betweeng- andc-
kernels.

Lemma9 For any AFsF and G: F<* = G iff jointly
F?% = G?% and F8" = G&*,

Proof The only-if direction is by Lemma 8. For the other
direction, supposé™ £ G*. WIlog. let(a,b) € F \
G*. Hence,(a,b) € F and(a,a) ¢ F or (b,b) ¢ F. If
(a,a) ¢ F, (a,b) € F2 by construction. Moreover, we
haveG®* C G°* and thus(a,b) ¢ G®". Hence,F?" #
G?*. For the other case, i.e. (b,b) ¢ F, (a,b) € F&°
follows by construction. We also haveg® C G°* and thus
(a,b) ¢ G&". Therefore in this casd;g" # G&". O

We continue with properties afkernels which we then
use to show that-kernels characterize strong equivalence
wrt. complete semantics.

Lemma 10 For any AFF, c(F) = c(F").



Lemma 11 If F** = G, then(F U H)** = (G U H)*"
for all AFs H.

Theorem 4 For any AFsF andG: F<* = G iff ' =S G.

Proof The only-if direction can be shown via Lemmas 10
and 11 and we just sketch the if-direction. Suppbse #
G*. By Lemma 9, we havé™" £ G2~ or F'8" £ G&". In
casel?" # G*%, we get by Theorem 28" #P G, i.e. there
exists an AFH, such thab(F U H) # p(G U H). In case,
Fe&r £ G~ we get by Theorem 3 #8 G, i.e. there exists
an AF H, such thag(F U H) # g(G U H). In both cases,
Proposition 1 yields(FUH) # c(GUH), i.e.F £ G. O

Summary of Results for Strong Equivalence

We summarize our results for strong equivalence.

Theorem 5 The following relations holds for all AFE', G,
ando € {a,p,i,ss},

QD F=d=F=G
(2 F=G < (F=¢ GandF =£ @)

Proof Relation (1) is by Lemma 3 and Theorems 1 and
Relation (2) is by Lemma 9 and Theorems 2, 3 and 4[]

None of the other relations hold, as we sketch next.

Example 10 Consider the following frameworks:

RN (RO
-0 ® 0

We haveF?* = s = G = G%¢ = G&" = G while
F&% = H. Thus,F?* = G®% (similarly for F** = G*%)
does not implyFe® = G&~, i.e., FF =7 G does not imply
F =t Gforo € {s,a,p,i,ss} (Theorems 1-3). On the other
hand,F** = F andG** = @, and therefore’ =7 G does
notimplyF =< G for o € {s, a, p,i,ss} (Theorems 1, 2 and
4). Moreover,H&" = H?* = H** = H and H** = I. Us-
ing our observations on kernels &f, we get thatF' =¢ H
does not implyF =2 H for ¢ € {s,a,p,i,ss,c} (Theo-
rems 1-4). Finally, observe thdt® = 12* = I and recall
that H** = H and H*" = [. Thus,H =: I does not imply
H =7 Iforo € {a,p,i,ss} (Theorems 1 and 2).

An inspection of the definition of kernels shows that self-
loops play a crucial role. In fact, the following observatio
is quite straightforward:

Lemma 12 For any self-loop free AFF, FF = F¢ =

FEIK, — FCI{ — Fgl{.

Thus for self-loop free AFs the concept of strong equiva-
lence collapses to syntactic equivalence for all semantics

Theorem 6 For any self-loop free AF$’ and G, we have
F=Giff F=7G,o €{s,a,p,c,g,i,ss}.

Strong Equivalence in Terms of Consequences

An alternative approach to “strong” notions of equivalence

between argumentation frameworks is to define such a con-
cept in terms of consequences. To this end, let for an
AF F, cred’(F) = Ugeqr) S be the set of credulous

consequences af (wrt. semanticsr), and skept’(F) =
ﬂSGU(F) S the set of skeptical consequencegiofwrt. o).
In cases(F) = ), we definé skept®(F) = A(F).
Definition 7 Letp € {cred, skept}. We call AFSF and G
strongly p-equivalent wrt. semantics, in symbolsF’ =7 |
G, iff for each AFH, p° (F U H) = p°(G U H) holds.

We observe that for admissible semantics strehgt-
equivalence is trivial, i.eskept® (F') = skept®(G) holds for
any AFsF, G (basically sincé) € a(H), for every AFH).
In all remaining cases, the concepts from Definition 7 coin-
cide with strong equivalence as defined in Definition 2.

Theorem 7 For any AFsF, G, ando € {s,p,c,g,i,ss},
the following propositions are equivalent:

1) F =9 G;
(2) F =¢ G,

s;cred ’

2(3) F=° G

s;skept M
Also, (1) iff (2) foro = a.

Proof The assertion holds for € {g,i}, since each AF
possesses a unique grounded, respectively ideal, extensio
Also, it is clear that (1) implies (2), and (1) implies (3),
for any of the considered semantics. We now show (2)
implies (1) foro € {s,a,p,c,ss}, and (3) implies (1) for

o € {s,p,c,ss}.

For the casel(F') # A(G) we can use similar arguments

as in previous proofs. In what follows, let us thus assume
A(F) = A(G). Moreover, let) € {s,a} andF 2% G, i.e.
there exists an AH{, such thaty(F U H) # 6(G U H).
Wilog. letS € §(F U H) \ §(G U H). Observe that # 0
holds: forf = a, this is obvious; for§ = s, this would
yield that F U H is the empty AF, i.e. A(F U H) = 0.
But by the assumptiod (F') = A(G), we getA(F U H) =
A(GUH), and thug7 U H had to be the empty AF, as well;
a contradiction to our assumptidn#: G.

Consider now the following AR

(A(FUH)US', | J{(a,d),(d,a’), (d,b) | b€ S\{a}}
a€esS
U{(b,b) | be A(FUH)\S})

whereS’ = {a’ | a € S} is a set of disjoint fresh arguments.
LetFf=FUHUK andGT = GUH UK.

For the cas® = s, i.e. where we had and H such
that S € s(F U H) \ s(GU H), one can now show
s(F1) = {S} ands(GT) = (). We obtaincred®(F1) = S #

0 = cred®(G"). F #5 ., G follows by definition (since
F'=FU(HUK)andG' = GU (H U K)). This shows
that (2) implies (1) for stable semantics. Moreover, we have
skept®(FT) = S # A(G") = skept®(GT) sinceS C A(G')

4Another reasonable definition for this case would be
skept®(F) = 0.



holds by definition ofK, which contains at least one fresh
argument’ ¢ S. Thus, we also havé’ #5 ., G. This
shows that (3) implies (1) for stable semantics.
In the casé = a, we havea(FT? = {9,0} anda(GT) =
{0}. Therefore, we also hayg F'') = ss(FT) = {S} and
S € ¢(FT), while p(GT) = ss(GT) = ¢(GT) = {0}. Thus,
for o’ € {a,p,c,ss}, we havecred"/(FT) =S #0 =
cred” (G1), and thusF #7, ., G. This shows that (2)
implies (1) for those semantics; in fact, since we assumed
F #2 @G, we had implicitly assumed alsb' #? G and
F #% G (by Theorem 2) as well a8 #5 G (by rela-
tion (2) in Theorem 5). Moreover, we haggept™(FT) =
skeptP(FT) = S # () = skept®(GT) = skept™(GT), and
thusF £7., . G, fora” € {p,ss} showing that (3) implies
(1) for those two semantics. It remains to shéwzs .,
G. For the moment, our construction does not guarantee
0 ¢ c(F') and thusskept®(F1) = skept®(GT) still might
hold. Consider a further AE = (S U {¢,d}, {(c,d)} U
{(d,s) | s € S}). Then,a(GT U L) = {0,{c}}, and
sincec is not attackede(GT U L) = {{c}}. On the other
hand,c(FTU L) = {S U {c}}, sincec defends all elements
from S and S remains admissible " U L. We obtain
skept*(FTUL) = SU {c} # {c} = skept*(GTUL). O

Local Equivalence

So far, we have considered an arbitragntextfor equiv-
alence, i.e. we put no restriction on the AHswhich are
considered to be conjoined with the AFsand G under
comparison. Now we weaken this requirement by consider-
ing only AFs H which do not introduce any new arguments.
We call the resulting equivalence notion local equivalence

Definition 8 Two AFSFE and G are calledlocally (strong)
equivalentto each other wrt. a semantics, in symbols
F =7 G, iff for each H with A(H) C A(F) U A(G),
o(FUH)=0(GUH).
For some semantics, strong and local equivalence coincide.
Theorem 8 For any AFsF,G: F =] G iff I =7 G for
o € {a,p,i,ss}.

Proof If FF =7 G, thenF =7 G. Assume that’ £9 G.
Then, there is an AH such that(F U H) # o(G U H).
By inspecting the proof of Theorem 2 we notice that we can
always findH such thatd(H) C A(F) U A(G) holds, and
thereforeF" #7 G, foro € {a, p, i, ss}. O

For the other semantics, we observe certain differences.

We start with the case of stable semantics in which strong
and local equivalence almost coincide. The following exam-
ple illustrates the case in which two AFs are locally equiva-
lent, but not strongly equivalent wrt. stable semantics.

Example 11 Consider F’ ({a,b},{(b,b),(b,a)}) and
= ({b},{(b,b)}). Here,s(F) = s(G) = 0, but from
A(F) # A(G), we haveF™" £ G**, i.e.,F £ G. On the
other hand, we observe that @l such thatA(H) C {a, b}
yields(FUH) =s(G U H). F =; G follows.

Theorem 9 For any AFsF,G: F =} G iff F =;
boths(F) = s(G )—Q)andtherelme (A(F)\

G or
A(G)) U

(A(G) \ A(F)) such that(a,a) ¢ F UG and forallb €
(A(F)U A(G)) \ {a}, (a,b) ¢ FUG and(b,b) € FNG.

Proof By definition F' =% G implies F' =; G for all
AFs F andG. Let us assums(F') = s(G) = () and there is
a € (A(F)\A(Q))U(A(G)\A(F)) suchthata,a) ¢ FUG
andforallb € (A(F)UA(G))\{a}itholds(a,b) ¢ FUG
and(b,b) € FNG. Wlog. leta € A(F) \ A(G). Thus
A(F) = A(G)U{a}. Consider an arbitrary AF such that
A(H) C A(F). Since(b,b) € FNG forallb € A(G) and
H can only involve arguments fror( F'), the only possible
conflict-free sets foF" U H andG U H aref) and{a}.

If there isb € A(G) not defeated by{a} in H, thenb
is not defeated by{a} in neitherF U H nor G U H, and
s(FUH) =s(GUH) = 0. On the other hand, if each
b € A(G) is defeated by{a} in H, then eachh € A(G) is
defeated by{a} in both F U H andGU H, ands(FUH) =
s(GU H) = {{a}} follows.

For the other direction, assume fitdtF) = A(G) and
F #£5 G. Wilog. let (a,b) € F*\ G**. We notice that
for H = (A(F),{(a,c) | ¢ € A(F) \ {a,b}}) used in the
proof of Theorem 1 it holdgl(H) C A(F) ands(FUH) #
s(GU H).

Assume themd(F') # A(G) Wilog. leta € A(F)\ A(G).
If s(F) # s(G), thenF #; G follows by definition. Thus,
we can assums F') = s(G). Consider first the casgF') #
(. Sincea ¢ A(G), a ¢ S’ for eachS’ € s(G) = s(F).
Similarly to the proof of Theorem 1, we talé¢ = ({a},0)
and notices(F'U H) # s(G U H).

Thus, let us assun®F) = s(G) = (. We denoteB =
(A(F)U A(G)) \ {a}. If (a,a) € F, we consider

H = (BU{a},{(a,d) | b€ B}).

Now {a} € s(GU H) while {a} ¢ s(FUH). If (a,a) & F
and there i$ € B such(b,b) ¢ F or (b,b) & G, let

H = (B,{(b,c) | c€ B\{b}}).
If (b,b) & ( ), then{a,b} € s(F'U H) while {a,b} ¢
UH). If (b,b) € R(F) and(b,b) ¢ R(G), then{b} €
s(GU H) while {b} € s(F U H). Finally, if (a,a) ¢ F and
(b,b) € FNG foreachh € (A(F)U A(G)) \ {a}. Assume
there ish € B such that(a, b) € F. We take

H = (A(F)UA(G),{(a,¢) | ¢ € (A(F) UA(G)) \ {b}}).

Now, {a} € s(F'U H) and{a} ¢ s(G U H) (sinceb is not
defeated by{a} in G U H).

Thus in each case we have found an AFsuch that
A(H) C A(F)U A(G) ands(F U H) # s(GU H) and
F #; G follows. O

We proceed with the complete semantics. Our first obser-
vation hereby is: for any AF$" andG (i) F' =5 G implies
F =P G; and (i) FF =5 G implies F =f G. While (ii)
is clear from definition, (i) follows from Proposition 1 and
Theorem 8. Moreover, both implications can be shown to be
strict.

Example 12Llet F = ({a b}, {(a,a), (a,b),(b,a)}) and

({a,b},{(a,a),(b,a)}). We haveF** = G** and
thus by Theorems 2 and 8, = G. On the other hand,
o(F) =1{0, {b}} # {{b}} = c(G), and henceF # G

s(G
G
b,b



For the other implication, letA = {a,b,c¢} and
R_ = {(ava)a {(ava)a (bv a)a (bv C)a( ) ( )} and con-
sider AFsF = (A, R U {(a,b)}) and G = (A, R). We

have F* # G°¢ and thus, by Theorem 4 #S G. On
the other handF" =§ G can be verified as follows. First,
we havec(F) = {{b}} = c(G). Since we are interested in
local strong equivalence, there are only two attao@lsb)
and (a, b), we can properly add via an AH with A(H) C
A(F)UA(G). If (b,b) € H,c(FUH) = {0} = «(GUH)

is clear. If (a,b) € H, FUH = GU H. In both cases, we
havec(FFU H) = ¢(GU H) andF =§ G follows.

These observations suggest that we require a kernel which F = ({a,b,¢,d},{(a,b), (b,

lies inbetween the notions efkernel and:-kernel.
Definition 9 For an AFF = (A, R), we define the-local-
kernelof F as F<'* = (A, R°'*) where
R =R\ {(a,b) | a #b,(a,a) € R, ((b,b) € Ror
(b,a), (c,b) € R for somec # a ) }.

We observe thaf?® C F<* C F°¢ holds for any AFF,
and provide a few lemmata along the lines as we did for
other kernels.

Lemma 13 For any AFF, c(F) = c(F¥).

Lemma 14 If F* = G* then(F U H)* =
for all AFs H with A(H) C A(F) U A(G).

As it was the case for local equivalence wrt. stable seman-
tics, there is also a certain pattern of frameworks hereghwhi
has to be taken into account additionally.

Example 13 Let A = {a, b, ¢} and consider AFs
F=(A{(a,a),(a,b),(b,a),(b,c), (c,c)}) and
G = (A7 {(a’a)v (a’b)v (b’a) ( ) ( ) (Ca C)})
First, we note thatF® # G andc(F) = c(G) =
{0, {b}}. LetH be arbitrary AF such that(H) C {a, b, c}.
Sinceb is the only self-loop free argument, and it is at-
tacked by at least one argument in bofi and G,
c(F UH) c(G U H) is either {0, {b}} or {0} and
F =§ G follows.

(GUH)e

Definition 10 An AF F'is calledb-saturated iff there exists
an argumend € A(F) such that(b,b) ¢ F, (a,b) € F
for somea # b, and for eactu € A(F) \ (I'r(0) U {b}),
(a,a) € Fand(b,a),(d,a) € F forall d € I'r(0) when-
ever(a,b) € F.

Now we are ready to state the characterization theoren(1) F

for the complete semantics.

Theorem 10 For any AFSF,G: F =¢ G iff either Fir =
G or F andG are bothb-saturated withA(F) = A(G),
I'r(0) = T'¢(0), and(d,a) € F iff (d,a) € G holds, for
eacha € A(F)andd € {b} UTr(0).

Finally, we consider the grounded semantics. As with sta-
ble and complete semantics, local equivalence wrt. gradinde
semantics is close to strong equivalence, but in addition
there are certain frameworks which have to be taken into
account. For instance, consider AFsand G such that
A(F) = A(G) andg(F) = g(G) = 0. Now,g(FU H) =

() F=$G = (F

g(G U H) = 0 always holds for any AFH such that
A(H) C A(F) and thusF’ =¥ follows.

We start with additional notation. Given an argument
a and an AFF, F* is the framework resulting fron¥
by deleting argument, all arguments attacked by and
by deleting all attacks adjacent to some of the deleted ar-
guments. Note that, in particular, fx()) = S, then
g(F) = SUg(N.es Fy). Also note that arguments de-
fended bya in F' are unattacked if;.

Example 14 Consider AFs

¢), (¢,d), (d,c)}) and
G = ({a’bvc’d}a{(avb)( )( )})
Now, F&* = F # G = G&% and thusF #& G. We
notice thatl'r(0) = FG(Q)) = {a} and F} = G =

({c,d},{(c,d),(d,c)}). One can now check that given any
AF H such thatA(H) C A(F),g(FUH) = g(GUH)
holds, and thug” =f G holds.

There are also other special cases, which we call patho-
logical based on their structure containing self-loopsafibr
arguments (except potentially one).

Definition 11 An AF F is self-loop pathologicaf (a,a) €
F for all a € A(F), andb-pathologicalif b € A(F) is
unattacked irF" and(a, a) € F forall a # b.

Finally, we are ready to state the characterization theorem
for local equivalence wrt. grounded semantics. In addiiion
strongly equivalent AFs, we have to take into account frame-
works similar to those in Example 14 and the pathological
cases.

Theorem 11 For AFsF, G: F =} G iff
e =@, or
e jointly A(F) = A(G),Tr(0) =T¢(0) =S, and
—incaseS # 0: (FF) = (GZ)* forall a € S; or
— incaseS = {a}: both F* andG;; are self-loop patho-
logical, or A(F}) = A(G?) and bothF and G}, are
b-pathological for somé.

Summary of Results for Local Equivalence

In the following we give a summary of our results for local
equivalence.

Theorem 12 The following relations holds for all AF§’,

G' andO' € {aa pa i,SS},

=G=F=

=7 GandF =f G)

Proof First, assume’ =7 G. ThenF =7 G by The-
orem 8, andF =} G by Theorem 5. Thus' =; G

follows. Secondly, assumé& = G. Consider an ar-
bitrary AF H such thatA(H) C A(F) U A(G). Since
F =§ G, we havec(F U H) = ¢(G U H). By Proposi-

tion 1,g(F U H) = g(G U H) and sinced was arbitrary,
F =% G follows. Also,p(F U H) = p(G U H) by Proposi-
tion 1, andF =} G follows. By Theorems 8 and Z, =7 G
foro € {a,p,i,ss} follows. O

We sketch next that none of the other relations hold.



Example 15 Recall AFsF', G, H, andI from Example 10: of a given AF by a further AF which carries the additional
information. It is argued in (Coste-Marquis et al. 2007)
that a union of AFs does not necessarily take into account

F- G - the implicit knowledge of its parts, and thus union is not
@:\@) @’—\@) considered as a suitable operation for merging AFs seen as

o @@ TI- @ @ individual agents. However, strongly equivalent AFs have
the same extensions regardless of the additional knowledge
provided, and thus strong equivalence can indeed be under-

By recalling thatF” =7 G and I =; G, and noticing that ~ stood as a property deciding whether two AFs provide the

A(F) = A(G), we getF' =/ GandF =; G. Onthe o_ther same implicit information.

hand,F* £} G §|nceg(F) = {0} # {{b}} = g(G). Since There is further work which is related to our investiga-

all argumeEth in” and  are attackedcg(F) =g(H) = tions. Rotstein et al. (2008a) add dynamics to abstract ar-

{0} andF =; H follows. Howeverf #; H sincec(F) # gumentation via so-called dynamic argumentation frame-

c(H), F' #] H sincel" ¢ H, andljfl i smce}if_s works (DAFs). Given an associated set of evidence, DAFs

H and A(F) = A(H). Finally Ij =1 smceg—[ =51 are reduced to AFs in the classical sense. Evidence up-

and A(H) = A(I), whereasl! Z7 I sincell #7 I. The  yate and erasure are used to change the instance of the

observationi! #; I follows by Theorem 12. DAF. Attack refinement and abstraction (Boella, Kaci, and
Similarly to strong equivalence, self-loops are in a cru- van der Torre 2009a; 2009b) is viewed as an addition or
cial role with local equivalence. In fact, for self-loop ére respectively removal of a single attack from the set of ar-

AFs, the concept of local equivalence collapses to symtacti guments of the original AF. Cayrol, Dupin de Saint-Cyr,

equivalence for all but grounded semantics (see Example 14 and Lagasquie-Schiex (2008) carefully analyzed the situa-

for AFs F andG such thatF' # G andF =¢ G). tion when a new argumeatis introduced, limiting to cases

Theorem 13 For any self-loop free AF§ andG, F = G in _W_hlch this argument only has asingle interaction with the

iff £ =7 Gforo € {s,a,p,c,i,ss}. original AF. In other words, given an AF' it can be com-

! bined with H such thatA(H) = A(F) U {a}, a ¢ A(F),
Discussion R(H) € {{(a,b)},{(b,a)}}. Under these assumptions, the
relationship between the set of extensions of the origifal A

We studied strong equivalence in the context of abstract F and its revisionF U H is then analyzed. Note, however,

argumentation and provided characterizations how to de- that in our proofs we mostly used more involved AHsto

cide strong equivalence with respect to the most impor- show that two AFs are not strongly equivalent. Nonetheless,

tant semantics for argumentation frameworks. In particu- there might be certain common aspects in revising AFs and

lar, we showed that strong equivalence wrt. admissible, pre strong equivalence between AFs; this analysis is ongoing
ferred, ideal, and respectively, semi-stable semantigs co  work.

cides, while stable, grounded, and complete semanticg yiel Recent work by Lonc and Truszczyhski (2010) investi-

dlfTertent rf1ot|ons of st{opg efquwalencke. -Lh'i IS, howeverl,f gates equivalence relations on graphs in a very general set-
only true for argumentation frameworks Which poSSess se ting. Their methods could provide an alternative way to de-

Iciops. For_sellf-loop frtee :‘Iramevx_/grksdwe COUI?. show thatt rive some of the results provided here, in particular Theo-
strong equivaience wrt. all considered semantics amounts o, 6 - oy other results in this paper, the techniques pro-

to syntactical equivalence. _This strengthens th_e assump-yiged in (Lonc and Truszczyhski 2010) seem not to be ap-
tion that abstract argumentation framewqus provide a very plicable, since these techniques rely on self-loop frepltsa
“compact” KR formalism. In other words, in terms of strong and dea’I with unrestricted extensions of graphs

equivalence there is no room for redundancy in such (self- ) ) o
loop free) frameworks. Our future goal is to obtain deeper insight to the dynam-

We also considered strong equivalence when defined €S of AFs by considering further variants of equivalence ob
over credulously and respectively skeptically accepted ar tained by parameterizing the augmented AFs. A general pa-
guments, and showed that in all but admissible semantics Fameterization scheme would cover the cases studied in this
these concepts reduce to the corresponding standard notionVork as special cases. Other interesting special cases can
of strong equivalence. Finally, we weakened the concept D€ Seen to arise. For instance, one could consider general-
of strong equivalence by considering only augmentation of izations of the setting as Cayrol, Dupin de Saint-Cyr, and

AFs which do not add any new arguments to the compared Lagasquie-Schiex (2008), i.e., allow the context AFto
frameworks. attackF’ through new arguments only, &f to contain new

Understanding dynamics in argumentation is essential &rgumentswhich can be attacked by arguments ffoonly.
for revising argumentation theories (Falappa, Kern-lsber
and Simari 2009). Indeed, we provided here a somewhat
orthogonal access for understanding the semantics of dy- Acknowledgements
namically evolving AFs (neither arguments nor attacks are
withdrawn). Our results indicate that dynamically equiv- The authors want to thank Gerd Brewka, Ringo Baumann
alent knowledge is very close to symbolic equivalence in and the anonymous referees for their comments which
terms of AFs. In our setting, “evolving” refers to the union  helped to improve this paper.



References

Baroni, P., and Giacomin, M. 2009. Semantics of abstract
argument systems. In Rahwan, |., and Simari, G., eds.,
Argumentation in Artificial IntelligenceSpringer. 25-44.

Bench-Capon, T. J. M., and Dunne, P. E. 2007. Argumenta-
tion in artificial intelligence Artif. Intell. 171(10-15):619—
641.

Boella, G.; Kaci, S.; and van der Torre, L. 2009a. Dynam-
ics in argumentation with single extensions: Abstraction
principles and the grounded extension. In Sossai, C., and
Chemello, G., edsRroceedings of the 10th European Con-
ference on Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty (ECSQARU 2009plume 5590

of Lecture Notes in Computer Sciend®7-118. Springer.

Boella, G.; Kaci, S.; and van der Torre, L. 2009b. Dy-
namics in argumentation with single extensions: attack re-
finement and the grounded extension. In Sierra, C.; Castel-
franchi, C.; Decker, K. S.; and Sichman, J. S., eBso-
ceedings of the 8th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Volume 21213-1214. IFAAMAS.

Caminada, M. 2006. Semi-stable semantics. In Dunne,
P. E., and Bench-Capon, T. J. M., ed€omputational
Models of Argument: Proceedings of COMMA 2006l-
ume 144 ofFrontiers in Artificial Intelligence and Appli-
cations 121-130. I10S Press.

Cayrol, C.; Dupin de Saint-Cyr, F.; and Lagasquie-Schiex,
M.-C. 2008. Revision of an argumentation system. In
Brewka, G., and Lang, J., ed®roceedings of the 11th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2008p4-134. AAAI
Press.

Coste-Marquis, S.; Devred, C.; Konieczny, S.; Lagasquie-
Schiex, M.-C.; and Marquis, P. 2007. On the merging
of Dung’s argumentation systemsArtif. Intell. 171(10-
15):730-753.

Dung, P. M.; Mancarella, P.; and Toni, F. 2007. Com-
puting ideal sceptical argumentatioArtif. Intell. 171(10-
15):642-674.

Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person gameéurtif. Intell. 77(2):321—
358.

Dunne, P. E. 2009. The computational complexity of ideal
semanticsAtrtif. Intell. 173(18):1559-1591.

Falappa, M. A.; Kern-Isberner, G.; and Simari, G. R. 2009.
Belief revision and argumentation theory. In Rahwan, I.,
and Simari, G., edsArgumentation in Artificial Intelli-
gence Springer. 341-360.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
Equivalent Logic ProgramsACM Transactions on Com-
putational Logic2(4):526-541.

Lonc, Z., and Truszczyhski, M. 2010. On graph equiv-
alences preserved under extensiorg.t p: // ar xi v.

or g/ abs/ 1002. 1749.

Rotstein, N. D.; Moguillansky, M. O.; Falappa, M. A.;
Garcia, A. J.; and Simari, G. R. 2008a. Argument theory
change: Revision upon warrant. In Besnard, P.; Doutre, S.;
and Hunter, A., edsComputational Models of Argument:
Proceedings of COMMA 2008&olume 172 ofFrontiers

in Artificial Intelligence and Applications336—347. 10S
Press.

Rotstein, N. D.; Moguillansky, M. O.; Garcia, A. J.; and
Simari, G. R. 2008b. An abstract argumentation framework
for handling dynamics. IRroceedings of the 12th Interna-
tional Workshop on Non-Monotonic Reason({ihiVMR'08),
131-139.

Truszczynski, M. 2006. Strong and uniform equivalence
of nonmonotonic theories - an algebraic approaémn.
Math. Artif. Intell. 48(3-4):245-265.

Turner, H. 2004. Strong equivalence for causal theories.
In Lifschitz, V., and Niemela, I., edsRroceedings of the
7th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’Q4)lume 2923 of
Lecture Notes in Computer Scien@89-301. Springer.



