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Abstract. Abstract argumentation frameworks nowadays provide the nugatlpr
formalization of argumentation on a conceptual level. Numesamantics for this
paradigm have been proposed, wherely semantics has shown to nicely solve
particular problems concernend with odd-length cycles ehftameworks. In or-
der to compare different semantics not only on a theoreticsibb# is necessary
to provide systems which implement them within a uniform platfoAnswer-Set
Programming (ASP) turned out to be a promising direction far #iin, since it not
only allows for a concise representation of concepts inftdeargumentation se-
mantics, but also offers sophisticated off-the-shelvegesslwhich can be used as
core computation engines. In fact, many argumentation sersawice meanwhile
been encoded within the ASP paradigm, but not all relevant seesaamong them
cf2 semantics, have yet been considered. The contributionssoivibrk are thus
twofold. Due to the particular nature ef2 semantics, we first provide an alter-
native characterization which, roughly speaking, avoi@srecursive computation
of sub-frameworks. Then, we provide the concrete ASP-engsdiwhich are in-
corporated within the ASPARTIX system, a platform which attg implements a
wide range of semantics for abstract argumentation.
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1. Introduction

Abstract argumentation frameworks (AFs), introduced byn@{#], represent the most
popular approach for formalizing and reasoning over arquai®n problems on a con-
ceptual level. Dung already introduced different extemdiased semantics (preferred,
complete, stable, grounded) for such frameworks. In amfditiecent proposals tried to
overcome several shortcomings observed for those origegrakntics. For instance, the
semi-stable semantics [2] handles the problem of the pleseim-existence of stable
extensions, while the ideal semantics [5] is proposed ascuerstatus approach (each
AF possesses exactly one extension) less skeptical th@mdbaeded extension.

Another family of semantics, the so-called SCC-recursamantics [1], has been
introduced in order to solve particular problems arising&&s with odd-length cycles.
Hereby, a recursive decomposition of the given AF alongnsfiso connected compo-
nents (SCCs) is necessary to obtain the extensions. A plartimstance of the SCC-
recursive semantics, thg2 semantics, satisfies many requirements such as the symmet-
ric treatment of odd- and even-length cycles, and ensuagattacks from self-defeating

1This work was supported by the Vienna Science and Techndtagg (WWTF) under grant ICT08-028.



arguments have no influence on the selection of other argisnberbe included in an
extension.

This leads us to the fact that abstract argumentation dytoif¢rs an ever growing
number of different semantics, and thus a uniform implesi@n is necessary to com-
pare them not only on a theoretical level. Answer-Set Prograng (ASP, for short) is
a promising approach towards this direction, since thisagigm [9,10] allows a con-
cise representation of concepts as Guess and Check (guetssfagguments and check
whether this set satisfies the semantics’ properties) amgitive closure (important to
formulate reachability). Moreover, sophisticated ASBtegns such as Smodels, DLV,
Cmodels, Clasp, or ASSAT are able to deal with large problestances [3]. Finally, the
data complexity of evaluating ASP programs ranges (depegrfdom different syntacti-
cal classes) from complexity classesNP, coNP up ta4’ and toIl%’. Itis thus possible
to provide ASP queries which are on the same complexity Evéhe encoded argumen-
tation problem (see [6] for such complexity results). Poergiwork [7,11,13,14] already
addressed this issue and gave ASP-encodings for sevetmhangation semantics. In
particular, the system ASPARTIX [7] provides queries fog thost important types of
extensions including preferred, stable, semi-stable ptet®, grounded and ideal.

In this paper, we focus on the theoretical foundations tdwan ASP-encoding
for the ¢f2 semantics, which has been neglected in the literature sinfaarticular, it
turns out to be rather cumbersome to represghtsemantics directly within ASP. This
is due the fact that the original definition involves a resugsomputation of different
subframeworks. Our aim here is, roughly speaking, to shétrteed of recursion from
generating subframeworks to the concept of recursivelypmorant defeated arguments.
Having computed this seRD(S) for a given AFF and a setS of arguments, we
construct fromF’ aninstanceof F' with respect toR D (S) such that the:f2 extensions
of F' are given by the sets which are maximal conflict-free in their instance with restpe
to RDp(S). As a second result, we show that the 8 (S) can be captured via
a fixed-point operator; in other words, this allows to chsdee cf2 semantics using
linear recursion only. This novel characterization is tlaptured by a corresponding
ASP-encoding, where we now are able to directly (i) guess & snd then (i) check
whetherS is maximal conflict-free in the respective instance of theegiAF F'. Our
encodings are incorporated to the ASPARTIX system and aiéede on the web

The remainder of the paper is organized as follows. In thé sestion we recall the
necessary basics of argumentation frameworks and givedtiir@tibn of cf2 semantics.
In Section 3 we introduce our alternative characterizatioref2 semantics and in Sec-
tion 4 we put this characterization to work and sketch our ABBodings for the:f2
semantics. Finally, in Section 5 we conclude with a brie€dssion of related and future
work.

2. Preliminaries

We first recall some basic definitions for abstract arguntemtdrameworks and intro-
duce some further notations which are relevant for the ifethieopaper.
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Definition 1 An argumentation frameworkAF) is a pair F' = (A, R), whereA is a
finite set of arguments anl C A x A. The pair(a,b) € R means that: attacksb. A
setS C A of argumentsiefeatss (in F), if there is ana € S, such that(a,b) € R.
An argument € A is defendedby S C A (in F) iff, for eachb € A, it holds that, if
(b,a) € R, thenS defeats (in F).

A minimal criterion for an acceptable set of arguments isdbaontain an argument
attacking another argument in the set. Such acceptablasetalled conflict-free, and
maximal (wrt. set-inclusion) such sets will play an impatteole for ¢f2 semantics.

Definition 2 Let F' = (A, R) be an AF. A sef C A is said to beconflict-free (in F),

if there are noa, b € S, such that(a,b) € R. We denote the collection of sets which are
conflict-free (inF) by ¢f (F). S C A is maximal conflict-free, if S € ¢f(F') and for
eachT € ¢f(F), S ¢ T. We denote the collection of all maximal conflict-free sét& o
by mcf (F'). For the empty AR = (0, 0), we setmcf (Fy) = {0}.

For our purposes, we require some further formal machirgyySCCs(F), we
denote the set of strongly connected components of ad"AF (A, R) which identify
the maximal strongly connectédubgraphs of'; SCCs(F) is thus a partition ofA.
Moreover, for an argument € A, we denote byC'r(a) the component of" wherea
occurs in, i.e. the (unique) s€te SCCs(F'), suchthat € C. AFsF} = (41, Ry) and
F, = (A, Ry) are calleddisjointif A; N A, = (. Moreover, the union between (not
necessarily disjoint) AFs is defined 85 U F; = (A1 U A3, Ry U R»).

It turns out to be convenient to use two different conceptshtain sub-frameworks
of AFs. Let FF = (A, R) be an AF andS a set of arguments. Thetl)|s = ((4 N
S), RN (S x §)) is thesub-frameworlof F' wrt S and we also usé’ — S = F|\s.
We note the following relation (which we use implicitly laten), for an AFF' and sets
8,8 Flg\ss = F|ls = 8" = (F — 5')|s. In particular, for an AFF', a component
C € SCCs(F) of F and a sefS we thus have’|c\ g = Flc — S.

We now give the definition oif2 semantics. Our definition slightly differs from (but
is equivalent to) the original definition in [£].

Definition 3 Let F' = (A, R) be an AF andS C A. An argumenb € A is component-
defeatedby S (in F'), if there exists am € S, such that(a,b) € R anda ¢ Cr(b). The
set of arguments component-defeatedsby F is denoted byD z(.5).

Definition 4 Let F = (A, R) be an argumentation framework aista set of arguments.
Then,S is a c¢f2 extension of, i.e. S € ¢f2(F), iff

e incase|SCCs(F)| =1, thenS € mcef (F),
e otherwiseYC € SCCs(F), (SNC) € ¢f2(F|c — Dp(9)).

In words, the recursive definitioty2 (F') is based on a decomposition of the AFnto
its SCCs depending on a given sét of arguments. We illustrate the behavior of this
procedure in the following example.

3A directed graph is callestrongly connecteif there is a path from each vertex in the graph to every other
vertex of the graph.

4Dp(S), as introduced next, replaces the sBty(S, )" and F|¢ — Dp(S) replaces F| UPR(S,E)
moreover, the set of undefeated argumenis ('S, E')” as used in the general schema from [1], is not required
here, because the base functiondf# semantics does make use of this set.



Figure 1. The argumentation framewotk from Example 1.
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Figure 2. Tree of recursive calls for computing2 (F').

Example 1 Consider the AFF = (A, R) with A = {a,b,¢,d,e, f,g,h,i} and

R = {(a,b),(b,c),(c,a), (b,d), (b,e), (d, f), (e, f), (f,€); (f.9), (g, h), (h, i), (i, f)}

as illustrated in Figure 1. We want to check whetlee {a, d, e, g, i} is a ¢f2 extension
of F' (the arguments of the s@tare highlighted in Figure 1). Following Definition 4, we
first identify the SCCs af, namelyC, = {a,b,c}, Cy = {d} andC3 = {e, f, g, h,i}.
Moreover, we hav® (S) = {f}. This leads us to the following checks (see also Figure
2 which shows the involved subframeworks).

1. (SNCy) € ¢f2(F|c,): Fle, consists of a single SCC; hence, we have to check
whether(S N Cy) = {a} € mcf(F|c,), which indeed holds.

2. (SNCy) € ¢f2(F|c,): Fle, consists of a single argumed{and thus of a single
SCC);(S N Cy) = {d} € mef(F|c,) thus holds.

3. (SNC3) € ¢f2(Floy —{f}): Flos — {f} = Fl{e,g,n,i} cOnsists of four SCCs,
namelyCy = {e}, C5 = {g}, Cs = {h} andC; = {i}. Hence, we need a
second level of recursion faf’ = F;. 5.3 andS’” = S N Cs. Note that we
haveDp (S") = {h}. The single-argument ARS8’ |c, = Fl;cy, F'lc, = Fligy
F/|C7 = F|{L} all satisfy(S’ N Cl) € me(F/ cl); while F/|C6\{h} ylelds the
empty AF. Therfore(,S’ N Cs) = 0 € ¢f2(F|c,\ (1)) holds as well.

We thus conclude thaf is a ¢f2 extension off’. Further ¢f2 extensions off’ are
{b7 f’ h}' {b7 g7 Z} and{c7 d7 6797 Z}



3. An Alternative Characterization for the ¢f2 Semantics

In this section, we provide an alternative characterizeta the ¢f2 semantics. In par-
ticular, our aim is to avoid the recursive computation of-fnigmeworks (as, for instance,
depicted in Figure 2) and instead collect the different sétsomponent-defeated argu-
ments by a recursively defined set of arguments.

To avoid splitting an AF into sub-frameworks, we introdule following concept.

Definition 5 An AF F = (A, R) is calledseparatedif for each(a,b) € R, Cr(a) =
Cr(b). We defing[F]] = Ucescesrm) Fle and call[[F]] theseparationof £.

In words, an AF is separated if there are no attacks betwdfematit strongly con-
nected components. Thus, the separation of an AF alwaydsy&éekeparated AF. The
following technical lemma will be useful later.

Lemma 1 For any AFF and setS of argumentsl . soos(my [[F'lc — ST = [[F7 = S]].

Proof. We first note that for disjoint AF$” and G, [[F]] U [[G]] = [[F U G]] holds.
Moreover, for a seb of arguments and arbitrary AHS andG, (F — S) U (G — S) =
(F UG) — S'is clear. Using these observations, we obtain

U Fle-s=01 U Fle=-M=0 U Flo)=S]=IIF]-S].

CeSCCs(F) CeSCCs(F) CeSCCs(F)

It remains to show thdf[[F']] — S]] = [[F — S]]. Obviously, both AFs possess the same
argumentsA. Thus letR be the attacks dff[[F]] — S]] and R’ the attacks of[F" — S]].

R C R’ holds by the fact that each attack [iiF"]] is also contained irF’. To show
R’ C R, let(a,b) € R'. Thena,b ¢ S, andCr_g(a) = Cr_g(b). From the latter,
Cr(a) = Cr(b) and thug(a, b) is an attack if[F]] and also in[F]] — S. Again using
Cr_s(a) = Cp_g(b), shows(a,b) € R. O

Next, we define the level of recursiveness a framework shoiils r@spect to a
setS of arguments and then the aforementioned set of recursbaghponent defeated
arguments (bys) in an AF.

Definition 6 For an AFF = (A, R) and a setS of arguments, we recursively define the
level £r(S) of F wrt S as follows:

e if |SCCs(F)| = 1thenlp(S) =1,
e otherwise/r(S) = 1+ maz({€p|,—p.(5)(SNC) | C € SCCs(F)}).

Definition 7 Let F' = (A, R) be an AF andS a set of arguments. We define the set of
argumentsecursively component defeatedy S (in F') as follows:

e if [SCCs(F)| = 1thenRDg(S) = 0;
e otherwise RDr(S5) = Dr(S) UlUcesces(r) RPF|o—pr(s) (SN O).

We are now prepared to give our first alternative charaeor, which establishes
a cf2 extensionS of a given AFF' by checking whethe§ is maximal conflict-free in a
certain separated framework constructed frtBrasing.S.



Lemma 2 LetF' = (A, R) be an AF andS be a set of arguments. Then,
S e c¢f2(F)iff S € mef ([[F —RDp(9)]])-

Proof. We show the claim by induction ovéf(S).

Induction base. Fof(S) = 1, we have|SCCs(F)| = 1. By definitionRDr(S) = 0
and we have[F' — RDp(S)]] = [[F]] = F. Thus, the assertion states tf$at cf2(F')

iff S € mcf(F) which matches the original definition for thg2 semantics in case the
AF has a single strongly connected component.

Induction step. Lefr(S) = n and assume the assertion holds for all APsand sets

S’ with ¢/ (S") < n. In particular, we have by definition that, for eaChe SCCs(F),
Lp|o—Dp(s)(S N C) < n. By the induction hypothesis, we thus obtain that, for each
C € SCCs(F), the following holds:

(SNC) € ef2(Flo — Di(8) it (SNC) € mef ([[(Fle — Dr($) =R sl]) @)
whereR% o ¢ = RDp|.—p,(s)(S N C). Let us fix now aC' € SCCs(F). Since for

each furtheC” € SCCs(F) (i.e.C # C"), no argument fronRDp , _p,(s)(S N C’)
occurs inF'|¢, we have

(Flc = Drp(S)) = Rycs =

(Fle = Dp() - Rics) - U RDr, nus(SnC) =
C'eSCCs(F);C£C!
(F‘C_DF(S>)— U RDF‘C,DF(S)(SQC):
CeSCCs(F)

Fle — (DF(S) U U RDrepes (SN 0)) — Flo — RDp(S).
CeSCCs(F)

Thus, for anyC € SCCs(F), relation (1) amounts to
(SNC) € ¢f2(F|c — Dp(S)) iff (SN C) € mef ([Fle —RDp(S)).  (2)

We now prove the assertion. L8te ¢f2(F). By definition, for eactC' € SCCs(F),
(SNC) € ¢f2(F|c — Dr(9)). Using (2), we get that for eacti € SCCs(F), (SNC) €

mef ([[Flc — RDr(S)]]). By the definition of components and the semantics of being
maximal conflict-free, the following relation thus follows

U snoyemds( U [Flo-RDS)]):

CEeSCCs(F) CeSCCs(F)

SinceS = Ucescesm) (SN C) and, by Lemma UJ e soosm [Flc — RDR(S)]] =
[F—RDr(S)]], we arrive atS € mcf ([[F —RDr(S)]]) as desired. The other direction
is by essentially the same arguments. O



Next, we provide an alternative characterization/®P (.5) via a fixed-point op-
erator. In other words, this yields a linearization in theursive computation of this set.
To this end, we require a parameterized notion of reaclabili

Definition 8 Let ' = (A, R) be an AF.B a set of arguments, and b € A. We say that
bisreachablein F froma modulo B, in symbols: =% b, if there exists a path fromto
bin F|p, i.e. there exists a sequence . . ., ¢, (n > 1) of arguments such that = a,
cn =b,and(c;,civ1) € RN (B x B), forall i with1 <1 < n.

Definition 9 For an AFF = (4, R), D C A, and a setS of arguments,
Apg(D)={ac A|3beS:b+#a,(ba)c R abAs" b}

The operator is clearly monotonic, i.Ap g(D) C AF75(D’) holds forD C D’.
As usual, we len\}, s = Ar s(0) and, fori > 0, Al g = A(A;‘é). FurthermoreAp s
is used to denote the Ifp & r s ((}), which exists due to the monotonicity. We need two
more lemmata before showing thai g capturesRDg(S).

Lemma 3 For any AFF = (A, R) and any seS C A, A}, 4 = Dp(S).

Proof. We haveA}, s = Aps(0) = {a € A|3b € S:b+#a,(ba) € Ra#p b}
Hencea € A} 4, if there exists @ € S, such thaib, a) € R anda does not reach in
F,i.e.b & Cr(a). This meets exactly the definition &fx(.9). O

Lemma 4 For any AFF = (A, R) and any sef € ¢f(F),

Aps=Dp(S)U U AF|c—Dp(8),(SNC)-
CeSCCs(F)

Proof. Let FF = (A, R). For theC-direction, we show by induction over >0 that
A5 € Dr(S)UlUcescos(ry AF|c—Dr(5),(snc)- TO €ase notation, we Writd . s ¢
as a shorthand fah 7|, p,.(s),(sncy, WhereC € SCCs(F).

Induction baseA}. s € Dr(S) UUgcsoes(r) AFs,c follows from Lemma 3.

Induction step. Let > 0 and assumexgs C Dr(S) UlUcescos(r) Ar,s,c holds for
all j < i.Leta € A} 5. Then, there existslac S, such thatb,a) € R anda A7 b,
whereD = A\ AL L. If b ¢ Cr(a), we have alsa %4 b and thusa € Dp(S).
Hence, supposk € Cr(a). Then,a ¢ Dg(S) and, sinceS € ¢f (F') andb € S, also
b ¢ Dp(S). Thus, bothy andb are contained in the framewotR| - — D (.S) (and so
is the attack(b, a)) for C = Cr(a). Moreover,b € (S N C). Towards a contradiction,
assume now ¢ Ar s c. This yields that :?(chF(S) bfor D' = A\ Arsc,ie.
there exist arguments, . .., ¢, (n > 1) in F|c — Dr(S) but not contained il 5 ¢,
such that; = a, ¢, = b, and(c¢;, ¢;+1) € R, for all i with 1 < i < n. Obviously all the
¢;’'s are contained irf” as well, but since: A2 b (recall thatD = A\ AiFfsl), it must
hold that at least one of thg’s, sayc, has to be contained iﬁﬁé. By the induction
hypothesis, we get € Ax s ¢, a contradiction.



For theD-direction of the claim we proceed as follows. By Lemmag;(S) = A ¢
and thusDp(S) C Apg. It remains to sShoWJeesces(r) AF|o—Dr(s),(snc) S
Ars. We show by induction ovei that A;‘C_DF(S),(SQC) C Apg holds for each
C € SCCs(F). Thus, let us fix & € SCCs(F) and useAy, ¢ ~ as a shorthand for

Al o—Di(8),(SnC)"

Induction base. Let. € A} g . Then, there is @ € (S N C), such thath attacks
ain F' = F|c — Dp(S) anda %4, b, where A’ denotes the arguments &7, i.e.

A’ = C'\ Dp(5S). SinceF | is built from a SCCC of F, it follows thata #5275 b,
Sinceb € S, (b,a) € R, andDp(S) = A% ¢ (Lemma 3), we gett € A g C Aps.

Induction step. Let > 0 and assume&%)s)c C Apgforallj < i.leta € Al g .
Then, there is @ € (S N C), such that attacksa in F’ anda %2, b, whereD’ =
A"\ Al § .. Towards a contradiction, suppose? Ay, s. Sinceb € S and(b,a) € R,
it follows that there exist arguments, ..., c, (n > 1)in F \ Ar g, such that; = q,
cn = b, and(c¢;, ciy1) € R, for all ¢ with 1 < ¢ < n. All thesec;’s are thus contained in
the same component asand moreover thesg’s cannot be contained iPx(S), since
Dp(S) C Ap,s. Thus, they are contained i|c — Dr(.S), but sinces #fm’f b, there is
at least one suchy, sayc, contained irﬁ’gé’c. By the induction hypothesis,c Ar g,
a contradiction. O

We now are able to obtain the desired relation.
Lemma 5 For any AFF = (A, R) and any sefS € ¢f (F), Ar,s = RDg(S).

Proof. The proof is by induction ovefz(S).

Induction base. Fofr(S) = 1, |SCCs(F')| = 1 by Definition 6. From this and Defi-
nition 7, we obtainRD(S) = Dp(S) = 0. By Lemma 3,A} ¢ = Dr(S) = 0. By
definition, A 5 = () follows from A%, ¢ = 0.

Induction step. Letr(S) = n and assume the claim holds for all palf§ S’ € ¢f (F”),
such thatg/ (S’) < n. In particular, this holds fof” = F|c — Dr(S) andS’ = (SN
C), with C € SCCs(F'). Note that(S N C') is indeed conflict-free iF’|c — Dp(S). By
definition, RDp(S) = Dr(S)UUcescesr) RPF|o—Dps(s)(SNC) and by Lemma 4,
Ars = Dp(S) UlUcescos(ry AF|o—Dr(s),snc- Using the induction hypothesis, i.e.
AF)o—Dp(8),5nc = RDp|—pr(s)(S N C), the assertion follows. O

We finally reached our main result in this section, i.e. aeraltive characterization
for ¢f2 semantics, where the need for recursion is delegated todyiaimt operator.

Theorem 1 For any AFF, ¢f2(F) ={S | S € cf(F) N mef ([[F — Ars])}

Proof. The result holds by the following observations. By LemmaSs2¢ ¢f2(F) iff
S € mef([[F — RDp(S)]]). Moreover, from Lemma 5, for an§ € ¢f (F), Aps =
RDr(S). Finally, S € ¢f2(F) impliesS € ¢f (F) (see [1], Proposition 47). O
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Figure 4. Graph of instanc ' — A, ¢/]] of Example 2.

Example 2 To exemplify the behavior & s and [[F' — A g s]], we consider the AF
FandS = {a,d,e,g,i} from Example 1. In the first iteration of computing the Ifp of
Ap s, we haveAp 5(0) = { f} because the argumeyfitis the only one which is attacked
by S but its attackerd is not reachable byf in F. In the second iteration, we obtain
Ars({f}) = {f,h}, and in the third iteration we reach the Ifp withr 5({f, h}) =
{f,h}. Hence[[F — A s]] of the AFF wrt S is given by

[F—Aprs]] = ({a, b,c,d,e,g,i},{(a,b),(b,c), (c, a)}).

Figure 3 shows the graph ¢ — Ar s]]. As is easily checkesl € mcf ([[F — Ars]]) as
expected, sinc8 € ¢f2(F'). For comparison, Figure 4 shows the graph[df — A g s/]]
wrt the ¢f2 extensionS’ = {b, f, h} consisting of two SCCs.

4. ASP-Encodings

In this section, we first give a brief overview of ASP (to be mprecise, logic program-
ming under the answer-set semantics [8]). Then, we use aet nbaracterization to im-
plement thecf2 semantics under this paradigm. To this end, we provide a firegram
mer2 Which, augmented with an input database representing a @ik, has its answer
sets in a one-to-one correspondence todi#eextensions of. For more background on
ASP, we refer to [9].

An atomis an expressiop(ty, ..., t,), wherep is apredicateof arity n > 0 and
eacht; is either a variable or a constant from a dontdinVe suppose that a total order
< over the domain elements is availaBlan atom isgroundif it is free of variables. By
By, we denote the set of all ground atoms olMerA rule r is of the form

5ASP-solvers as DLV [9], which is underlying our system ASAAR usually provide such an order for the
domain elements of the currently given program.



a:- by,... bk, notbgyy,..., notby,,

with m > k > 0, and whereu, b4, ...,b,, are atoms, androt” stands fordefault
negation We identify thehead of such a ruler as H(r) = a and also useB™*(r) =
{b1,...,bp} and B~ (r) = {bg+1,...,bm} to denote the positive, and resp., negative

body ofr. A rule r is groundif no variable occurs ir. An (input) databasés a set of
ground rules with empty body. A program is a finite set of ruke® a progran and an
input databas®, we write?(D) instead ofD UP. Gr(P) is the set of ruleso obtained
by applying, to each rule € P, all possible substitutions from the variables ir? to
the constants ifP.

An interpretation] C By, satisfiesa ground rule iff H(r) € I wheneverB™(r) C
I'andB~(r)N1I = 0. A programP is satisfied by an interpretatidn iff  satisfies each
rule inGr(P). I C By is ananswer sebf P iff it is a subset-minimal set satisfying

Pl ={H(r):- B*(r) | INB~(r) =0,r € Gr(P)}.

For a progran, we denote the set of its answer setsh§(P).

We now turn to our encoding.s» which computes:f2 extension along the lines
of Theorem 1. For a better understanding, we spljt into several modules which we
explain in an informal manner. These modules implementahewing steps, given an
AF F = (A, R):

1. Guesghe conflict-free sets C A of F.

2. For eachS, compute the sehr .

3. For eachs, derive theinstance[[F' — A s]].

4. CheckwhetherS is maximal conflict-free if[F' — A g s]].

To start with, let us first fix that a given AF = (A, R) is presented ta .z as a database
F = { arg(a) | a € A} U{att(a,b) | (a,b) € R }.

1. The guessing moduleThe following rules guess, when augmentedfbyor an AF
F = (A, R), any subsefS C A (to be precise, for an argumeate A, atomin(a)
indicates that: € S; while atomout(a) indicates that: ¢ S) and then check whether
the represented gueSss conflict-free inF":

e = { In(X) :- notout(X), arg(X);
out(X):- notin(X),arg(X);
- in(X),in(Y),att(X,Y) }.

2. The fixed-point module.Here we use the auxiliary predicates(-), succ(-,-) and
sup(-) which identify an infimum, a successor function and a suprarfar arguments
with respect to the previously mentioned orgef We exploit this order to iterate over
the operatof\ g s (-). GivenF = (A, R), by definition ofA g g itis sufficient to compute
at most|A| such iterations to reach the fixed-point. Let us now predentriodule and
then explain its behavior in more detail.

8For more details, we refer to [7], where a modutle is given which defines these predicates.



Treach = { arg_set(N, X) :- arg(X),inf(N); (3)
reach(N, X,Y):- arg_set(N, X), arg_set(N,Y),att(X,Y); (4)
reach(NV, X,Y) :- arg_set(N, X),att(X, Z),reach(N, Z,Y);  (5)
d(N, X):- arg_set(N,Y),arg_set(N, X),in(Y), att(Y, X),

not reach(N, X,Y); (6)
arg_set(M, X):- arg_set(N, X), not d(N, X),succ(N, M) }. (7)

Rule (3) first copies all arguments into a set indexed by tfimimm which initiates the
computation. The remaining rules are applicable to amitiradices, whereby rule (7)
copies (a subset of the) arguments from the currently coaapsiet into the “next” set
using the successor functisncec(+, -). This guarantees a step-by-step computation of
arg_set (i, -) by incrementing the indek The functioning of rules (4)—(7) is as follows.
Rules (4) and (5) compute a predicatach(n, =, y) indicating that there is a path from
argumentx to argumenty in the given frameworkestrictedto the arguments of the
current setx. In rule (6),d(n, z) is obtained for all arguments which are component-
defeated bys in this restricted framework. In other wordsrifis thei-th argument in the
order<, d(n, x) carries exactly those argumentsvhich are contained iNF’ - Finally,
rule (7) copies arguments from the current set whichnatecomponent-defeated to the
successor set.

3. The instance module.As already outlined above, if the supremumis reached
in Treach, We are guaranteed that the derived atems set(m, z) characterize exactly
those arguments from the given AF which are not contained i s. It is thus now
relatively easy to obtain the instan{{é’ — Ay, s]] which is done below via predicates
arg_new(-) andatt_new(-, ).
Tinst = { arg_new(X) :- arg_set(M, X), sup(M);
att_new(X,Y):- arg_new(X),arg_new(Y),att(X,Y),
reach(M,Y, X),sup(M) }.
4. The checking module.lt remains to verify whether the initially guessed $gis a
cf2 extension. To do so, we need to check whetfids maximal conflict-free in the
instance[[F' — Ag g]]. The following module does this job by checking whether only
those arguments are not containedirfor which an addition t& would yield a conflict.
X),out(X),in(Y);
Y), out(X),in(Y);

Tmef = { conflicting(X) :- att_new(Y,
(X,

conflicting(X) :- att_new (X, X);
(

conflicting(X) :- att_new

:- not conflicting(X), out(X), arg_new(X) }.

We now have our entire encodingss = 7. U<« UTreach UTinst U T er available
(recall that we have not given here the definitionnaf; see [7] for the details). The
desired correspondence between answer-setgfanektensions is as follows.



Theorem 2 LetF' be an AF. Then, (i) for each € ¢f2(F), thereisan/ AS(wcfg(ﬁ))
with S = {a | in(a) € I}; (ii) for each I € AS(wp2(F)), {a | in(a) € I} € cf2(F).

5. Discussion and Conclusions

In this paper, we introduced an alternative charactearndbr thecf2 semantics which

is based on a certain fixed-point operator in order to avadibre involved recursions
from the original definition [1]. This new characterizatiallowed us to provide a rela-
tively succinct ASP-encoding for computirg? extensions which has been incorporated
to the ASP-based argumentation system ASPARTIX. Extendimgechnigques to other
SCC-recursive semantics [1] is ongoing work.

Previous work [12] has shown thaf2 extensions can be characterized using a dif-
ferent (however, not implemented) semantics for logic prots. In the same paper, com-
plexity results forcf2 semantics have been reported, in particular that the vetiific
problem (i.e. checking whether a given set ig’a extension) can be decided in polyno-
mial time. We note that this result is reflected in our encgsliny the fact that (unstrat-
ified) negation is only used for guessing a candidate seteuliné verification part does
not contain any costly programming concepts (in particuar could avoid the use of
disjunction which is necessary to capture more involvedasgios; see [7] for details).
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