
cf2 Semantics Revisited1

Sarah Alice GAGGL and Stefan WOLTRAN

Institute of Information Systems 184, Vienna University ofTechnology,
A-1040 Vienna, Austria

Abstract. Abstract argumentation frameworks nowadays provide the most popular
formalization of argumentation on a conceptual level. Numerous semantics for this
paradigm have been proposed, wherebycf2 semantics has shown to nicely solve
particular problems concernend with odd-length cycles in such frameworks. In or-
der to compare different semantics not only on a theoretical basis, it is necessary
to provide systems which implement them within a uniform platform. Answer-Set
Programming (ASP) turned out to be a promising direction for this aim, since it not
only allows for a concise representation of concepts inherent to argumentation se-
mantics, but also offers sophisticated off-the-shelves solvers which can be used as
core computation engines. In fact, many argumentation semantics have meanwhile
been encoded within the ASP paradigm, but not all relevant semantics, among them
cf2 semantics, have yet been considered. The contributions of this work are thus
twofold. Due to the particular nature ofcf2 semantics, we first provide an alter-
native characterization which, roughly speaking, avoids the recursive computation
of sub-frameworks. Then, we provide the concrete ASP-encodings, which are in-
corporated within the ASPARTIX system, a platform which already implements a
wide range of semantics for abstract argumentation.

Keywords. Abstract Argumentation. Implementation.

1. Introduction

Abstract argumentation frameworks (AFs), introduced by Dung [4], represent the most
popular approach for formalizing and reasoning over argumentation problems on a con-
ceptual level. Dung already introduced different extension-based semantics (preferred,
complete, stable, grounded) for such frameworks. In addition, recent proposals tried to
overcome several shortcomings observed for those originalsemantics. For instance, the
semi-stable semantics [2] handles the problem of the possible non-existence of stable
extensions, while the ideal semantics [5] is proposed as a unique-status approach (each
AF possesses exactly one extension) less skeptical than thegrounded extension.

Another family of semantics, the so-called SCC-recursive semantics [1], has been
introduced in order to solve particular problems arising for AFs with odd-length cycles.
Hereby, a recursive decomposition of the given AF along strongly connected compo-
nents (SCCs) is necessary to obtain the extensions. A particular instance of the SCC-
recursive semantics, thecf2 semantics, satisfies many requirements such as the symmet-
ric treatment of odd- and even-length cycles, and ensures that attacks from self-defeating

1This work was supported by the Vienna Science and TechnologyFund (WWTF) under grant ICT08-028.

arguments have no influence on the selection of other arguments to be included in an
extension.

This leads us to the fact that abstract argumentation actually offers an ever growing
number of different semantics, and thus a uniform implementation is necessary to com-
pare them not only on a theoretical level. Answer-Set Programming (ASP, for short) is
a promising approach towards this direction, since this paradigm [9,10] allows a con-
cise representation of concepts as Guess and Check (guess a set of arguments and check
whether this set satisfies the semantics’ properties) and transitive closure (important to
formulate reachability). Moreover, sophisticated ASP-systems such as Smodels, DLV,
Cmodels, Clasp, or ASSAT are able to deal with large problem instances [3]. Finally, the
data complexity of evaluating ASP programs ranges (depending from different syntacti-
cal classes) from complexity classesP, NP, coNP up toΣP

2 and toΠP
2 . It is thus possible

to provide ASP queries which are on the same complexity levelas the encoded argumen-
tation problem (see [6] for such complexity results). Previous work [7,11,13,14] already
addressed this issue and gave ASP-encodings for several argumentation semantics. In
particular, the system ASPARTIX [7] provides queries for the most important types of
extensions including preferred, stable, semi-stable, complete, grounded and ideal.

In this paper, we focus on the theoretical foundations towards an ASP-encoding
for thecf2 semantics, which has been neglected in the literature so far. In particular, it
turns out to be rather cumbersome to representcf2 semantics directly within ASP. This
is due the fact that the original definition involves a recursive computation of different
subframeworks. Our aim here is, roughly speaking, to shift the need of recursion from
generating subframeworks to the concept of recursively component defeated arguments.
Having computed this setRDF (S) for a given AFF and a setS of arguments, we
construct fromF an instanceof F with respect toRDF (S) such that thecf2 extensions
of F are given by the setsS which are maximal conflict-free in their instance with respect
to RDF (S). As a second result, we show that the setRDF (S) can be captured via
a fixed-point operator; in other words, this allows to characterizecf2 semantics using
linear recursion only. This novel characterization is thencaptured by a corresponding
ASP-encoding, where we now are able to directly (i) guess a set S and then (ii) check
whetherS is maximal conflict-free in the respective instance of the given AF F . Our
encodings are incorporated to the ASPARTIX system and are available on the web2.

The remainder of the paper is organized as follows. In the next section we recall the
necessary basics of argumentation frameworks and give the definition of cf2 semantics.
In Section 3 we introduce our alternative characterizationfor cf2 semantics and in Sec-
tion 4 we put this characterization to work and sketch our ASP-encodings for thecf2
semantics. Finally, in Section 5 we conclude with a brief discussion of related and future
work.

2. Preliminaries

We first recall some basic definitions for abstract argumentation frameworks and intro-
duce some further notations which are relevant for the rest of the paper.

2www.dbai.tuwien.ac.at/research/project/argumentation/systempage/

Definition 1 An argumentation framework (AF) is a pair F = (A,R), whereA is a
finite set of arguments andR ⊆ A × A. The pair(a, b) ∈ R means thata attacksb. A
setS ⊆ A of argumentsdefeatsb (in F), if there is ana ∈ S, such that(a, b) ∈ R.
An argumenta ∈ A is defendedby S ⊆ A (in F) iff, for eachb ∈ A, it holds that, if
(b, a) ∈ R, thenS defeatsb (in F).

A minimal criterion for an acceptable set of arguments is to not contain an argument
attacking another argument in the set. Such acceptable setsare called conflict-free, and
maximal (wrt. set-inclusion) such sets will play an important role forcf2 semantics.

Definition 2 Let F = (A,R) be an AF. A setS ⊆ A is said to beconflict-free (in F),
if there are noa, b ∈ S, such that(a, b) ∈ R. We denote the collection of sets which are
conflict-free (inF) by cf (F). S ⊆ A is maximal conflict-free, if S ∈ cf (F) and for
eachT ∈ cf (F), S 6⊂ T . We denote the collection of all maximal conflict-free sets of F
bymcf (F). For the empty AFF0 = (∅, ∅), we setmcf (F0) = {∅}.

For our purposes, we require some further formal machinery.By SCCs(F), we
denote the set of strongly connected components of an AFF = (A,R) which identify
the maximal strongly connected3 subgraphs ofF ; SCCs(F) is thus a partition ofA.
Moreover, for an argumenta ∈ A, we denote byCF (a) the component ofF wherea
occurs in, i.e. the (unique) setC ∈ SCCs(F), such thata ∈ C. AFsF1 = (A1, R1) and
F2 = (A2, R2) are calleddisjoint if A1 ∩ A2 = ∅. Moreover, the union between (not
necessarily disjoint) AFs is defined asF1 ∪ F2 = (A1 ∪ A2, R1 ∪ R2).

It turns out to be convenient to use two different concepts toobtain sub-frameworks
of AFs. Let F = (A,R) be an AF andS a set of arguments. Then,F |S = ((A ∩
S), R ∩ (S × S)) is thesub-frameworkof F wrt S and we also useF − S = F |A\S .
We note the following relation (which we use implicitly later on), for an AFF and sets
S, S′: F |S\S′ = F |S − S′ = (F − S′)|S . In particular, for an AFF , a component
C ∈ SCCs(F) of F and a setS we thus haveF |C\S = F |C − S.

We now give the definition ofcf2 semantics. Our definition slightly differs from (but
is equivalent to) the original definition in [1].4

Definition 3 LetF = (A,R) be an AF andS ⊆ A. An argumentb ∈ A is component-
defeatedbyS (in F), if there exists ana ∈ S, such that(a, b) ∈ R anda /∈ CF (b). The
set of arguments component-defeated byS in F is denoted byDF (S).

Definition 4 LetF = (A,R) be an argumentation framework andS a set of arguments.
Then,S is a cf2 extension ofF , i.e.S ∈ cf2 (F), iff

• in case|SCCs(F)| = 1, thenS ∈ mcf (F),
• otherwise,∀C ∈ SCCs(F), (S ∩ C) ∈ cf2 (F |C − DF (S)).

In words, the recursive definitioncf2 (F) is based on a decomposition of the AFF into
its SCCs depending on a given setS of arguments. We illustrate the behavior of this
procedure in the following example.

3A directed graph is calledstrongly connectedif there is a path from each vertex in the graph to every other
vertex of the graph.

4DF (S), as introduced next, replaces the set “DF (S, E)” and F |C − DF (S) replaces “F↓UPF (S,E)”;
moreover, the set of undefeated arguments “UF (S, E)” as used in the general schema from [1], is not required
here, because the base function forcf2 semantics does make use of this set.

a

b

c

d

e f

g

h

i

Figure 1. The argumentation frameworkF from Example 1.

F

F |{a,b,c} F |{d} F |{e,g,h,i}

F |{e} F |{g} F0 F |{i}

Figure 2. Tree of recursive calls for computingcf2 (F).

Example 1 Consider the AFF = (A,R) with A = {a, b, c, d, e, f, g, h, i} and
R = {(a, b), (b, c), (c, a), (b, d), (b, e), (d, f), (e, f), (f, e), (f, g), (g, h), (h, i), (i, f)}

as illustrated in Figure 1. We want to check whetherS = {a, d, e, g, i} is acf2 extension
of F (the arguments of the setS are highlighted in Figure 1). Following Definition 4, we
first identify the SCCs ofF , namelyC1 = {a, b, c}, C2 = {d} andC3 = {e, f, g, h, i}.
Moreover, we haveDF (S) = {f}. This leads us to the following checks (see also Figure
2 which shows the involved subframeworks).

1. (S ∩ C1) ∈ cf2 (F |C1
): F |C1

consists of a single SCC; hence, we have to check
whether(S ∩ C1) = {a} ∈ mcf (F |C1

), which indeed holds.
2. (S∩C2) ∈ cf2 (F |C2

): F |C2
consists of a single argumentd (and thus of a single

SCC);(S ∩ C2) = {d} ∈ mcf (F |C2
) thus holds.

3. (S ∩ C3) ∈ cf2 (F |C3
− {f}): F |C3

− {f} = F |{e,g,h,i} consists of four SCCs,
namelyC4 = {e}, C5 = {g}, C6 = {h} and C7 = {i}. Hence, we need a
second level of recursion forF ′ = F |{e,g,h,i} andS′ = S ∩ C3. Note that we
haveDF ′(S′) = {h}. The single-argument AFsF ′|C4

= F |{e}, F ′|C5
= F |{g},

F ′|C7
= F |{i} all satisfy(S′ ∩ Ci) ∈ mcf (F ′|Ci

); while F ′|C6\{h} yields the
empty AF. Therfore,(S′ ∩ C6) = ∅ ∈ cf2 (F |C6\{h}) holds as well.

We thus conclude thatS is a cf2 extension ofF . Further cf2 extensions ofF are
{b, f, h}, {b, g, i} and{c, d, e, g, i}.

3. An Alternative Characterization for the cf2 Semantics

In this section, we provide an alternative characterization for thecf2 semantics. In par-
ticular, our aim is to avoid the recursive computation of sub-frameworks (as, for instance,
depicted in Figure 2) and instead collect the different setsof component-defeated argu-
ments by a recursively defined set of arguments.

To avoid splitting an AF into sub-frameworks, we introduce the following concept.

Definition 5 An AFF = (A,R) is calledseparatedif for each(a, b) ∈ R, CF (a) =
CF (b). We define[[F]] =

⋃
C∈SCCs(F) F |C and call[[F]] theseparationof F .

In words, an AF is separated if there are no attacks between different strongly con-
nected components. Thus, the separation of an AF always yields a separated AF. The
following technical lemma will be useful later.

Lemma 1 For any AFF and setS of arguments,
⋃

C∈SCCs(F)[[F |C − S]] = [[F − S]].

Proof. We first note that for disjoint AFsF andG, [[F]] ∪ [[G]] = [[F ∪ G]] holds.
Moreover, for a setS of arguments and arbitrary AFsF andG, (F − S) ∪ (G − S) =
(F ∪ G) − S is clear. Using these observations, we obtain

⋃

C∈SCCs(F)

[[F |C−S]] = [[
⋃

C∈SCCs(F)

(F |C−S)]] = [[(
⋃

C∈SCCs(F)

F |C)−S]] = [[[[F]]−S]].

It remains to show that[[[[F]] − S]] = [[F − S]]. Obviously, both AFs possess the same
argumentsA. Thus letR be the attacks of[[[[F]] − S]] andR′ the attacks of[[F − S]].
R ⊆ R′ holds by the fact that each attack in[[F]] is also contained inF . To show
R′ ⊆ R, let (a, b) ∈ R′. Thena, b /∈ S, andCF−S(a) = CF−S(b). From the latter,
CF (a) = CF (b) and thus(a, b) is an attack in[[F]] and also in[[F]] − S. Again using
CF−S(a) = CF−S(b), shows(a, b) ∈ R. ¤

Next, we define the level of recursiveness a framework shows with respect to a
setS of arguments and then the aforementioned set of recursivelycomponent defeated
arguments (byS) in an AF.

Definition 6 For an AFF = (A,R) and a setS of arguments, we recursively define the
level ℓF (S) of F wrt S as follows:

• if |SCCs(F)| = 1 thenℓF (S) = 1;
• otherwise,ℓF (S) = 1 + max ({ℓF |C−DF (S)(S ∩ C) | C ∈ SCCs(F)}).

Definition 7 Let F = (A,R) be an AF andS a set of arguments. We define the set of
argumentsrecursively component defeatedbyS (in F) as follows:

• if |SCCs(F)| = 1 thenRDF (S) = ∅;
• otherwise,RDF (S) = DF (S) ∪

⋃
C∈SCCs(F) RDF |C−DF (S)(S ∩ C).

We are now prepared to give our first alternative characterization, which establishes
a cf2 extensionS of a given AFF by checking whetherS is maximal conflict-free in a
certain separated framework constructed fromF usingS.

Lemma 2 LetF = (A,R) be an AF andS be a set of arguments. Then,

S ∈ cf2 (F) iff S ∈ mcf ([[F −RDF (S)]]).

Proof. We show the claim by induction overℓF (S).

Induction base. ForℓF (S) = 1, we have|SCCs(F)| = 1. By definitionRDF (S) = ∅
and we have[[F −RDF (S)]] = [[F]] = F . Thus, the assertion states thatS ∈ cf2 (F)
iff S ∈ mcf (F) which matches the original definition for thecf2 semantics in case the
AF has a single strongly connected component.

Induction step. LetℓF (S) = n and assume the assertion holds for all AFsF ′ and sets
S′ with ℓF ′(S′) < n. In particular, we have by definition that, for eachC ∈ SCCs(F),
ℓF |C−DF (S)(S ∩ C) < n. By the induction hypothesis, we thus obtain that, for each
C ∈ SCCs(F), the following holds:

(S∩C) ∈ cf2 (F |C − DF (S)) iff (S∩C) ∈ mcf
(
[[(F |C − DF (S))−R′

F,C,S]]
)

(1)

whereR′
F,C,S = RDF |C−DF (S)(S ∩ C). Let us fix now aC ∈ SCCs(F). Since for

each furtherC ′ ∈ SCCs(F) (i.e. C 6= C ′), no argument fromRDF |C ′−DF (S)(S ∩ C ′)
occurs inF |C , we have

(F |C − DF (S)) −R′
F,C,S =

(
(F |C − DF (S)) −R′

F,C,S

)
−

⋃

C′∈SCCs(F);C 6=C′

RDF |C ′−DF (S)(S ∩ C ′) =

(
F |C − DF (S)

)
−

⋃

C∈SCCs(F)

RDF |C−DF (S)(S ∩ C) =

F |C −
(
DF (S) ∪

⋃

C∈SCCs(F)

RDF |C−DF (S)(S ∩ C)
)

= F |C −RDF (S).

Thus, for anyC ∈ SCCs(F), relation (1) amounts to

(S ∩ C) ∈ cf2 (F |C − DF (S)) iff (S ∩ C) ∈ mcf
(
[[F |C −RDF (S)]]

)
. (2)

We now prove the assertion. LetS ∈ cf2 (F). By definition, for eachC ∈ SCCs(F),
(S∩C) ∈ cf2 (F |C − DF (S)). Using (2), we get that for eachC ∈ SCCs(F), (S∩C) ∈
mcf ([[F |C − RDF (S)]]). By the definition of components and the semantics of being
maximal conflict-free, the following relation thus follows:

⋃

C∈SCCs(F)

(S ∩ C) ∈ mcf
(⋃

C∈SCCs(F)

[[F |C −RDF (S)]]
)
.

SinceS =
⋃

C∈SCCs(F)(S ∩ C) and, by Lemma 1,
⋃

C∈SCCs(F)[[F |C −RDF (S)]] =

[[F −RDF (S)]], we arrive atS ∈ mcf ([[F −RDF (S)]]) as desired. The other direction
is by essentially the same arguments. ¤

Next, we provide an alternative characterization forRDF (S) via a fixed-point op-
erator. In other words, this yields a linearization in the recursive computation of this set.
To this end, we require a parameterized notion of reachability.

Definition 8 LetF = (A,R) be an AF,B a set of arguments, anda, b ∈ A. We say that
b is reachablein F froma modulo B, in symbolsa ⇒B

F b, if there exists a path froma to
b in F |B , i.e. there exists a sequencec1, . . . , cn (n > 1) of arguments such thatc1 = a,
cn = b, and(ci, ci+1) ∈ R ∩ (B × B), for all i with 1 ≤ i < n.

Definition 9 For an AFF = (A,R), D ⊆ A, and a setS of arguments,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒
A\D

F b}.

The operator is clearly monotonic, i.e.∆F,S(D) ⊆ ∆F,S(D′) holds forD ⊆ D′.
As usual, we let∆0

F,S = ∆F,S(∅) and, fori > 0, ∆i
F,S = ∆(∆i−1

F,S). Furthermore,∆F,S

is used to denote the lfp of∆F,S(∅), which exists due to the monotonicity. We need two
more lemmata before showing that∆F,S capturesRDF (S).

Lemma 3 For any AFF = (A,R) and any setS ⊆ A, ∆0
F,S = DF (S).

Proof. We have∆0
F,S = ∆F,S(∅) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A

F b}.
Hence,a ∈ ∆0

F,S , if there exists ab ∈ S, such that(b, a) ∈ R anda does not reachb in
F , i.e.b 6∈ CF (a). This meets exactly the definition ofDF (S). ¤

Lemma 4 For any AFF = (A,R) and any setS ∈ cf (F),

∆F,S = DF (S) ∪
⋃

C∈SCCs(F)

∆F |C−DF (S),(S∩C).

Proof. Let F = (A,R). For the⊆-direction, we show by induction overi ≥ 0 that
∆i

F,S ⊆ DF (S) ∪
⋃

C∈SCCs(F) ∆F |C−DF (S),(S∩C). To ease notation, we writē∆F,S,C

as a shorthand for∆F |C−DF (S),(S∩C), whereC ∈ SCCs(F).

Induction base.∆0
F,S ⊆ DF (S) ∪

⋃
C∈SCCs(F) ∆̄F,S,C follows from Lemma 3.

Induction step. Leti > 0 and assume∆j
F,S ⊆ DF (S) ∪

⋃
C∈SCCs(F) ∆̄F,S,C holds for

all j < i. Let a ∈ ∆i
F,S . Then, there exists ab ∈ S, such that(b, a) ∈ R anda 6⇒D

F b,

whereD = A \ ∆i−1
F,S . If b /∈ CF (a), we have alsoa 6⇒A

F b and thusa ∈ DF (S).
Hence, supposeb ∈ CF (a). Then,a /∈ DF (S) and, sinceS ∈ cf (F) andb ∈ S, also
b /∈ DF (S). Thus, botha andb are contained in the frameworkF |C − DF (S) (and so
is the attack(b, a)) for C = CF (a). Moreover,b ∈ (S ∩ C). Towards a contradiction,
assume nowa /∈ ∆̄F,S,C . This yields thata ⇒D′

F |C−DF (S) b for D′ = A \ ∆̄F,S,C , i.e.

there exist argumentsc1, . . . , cn (n > 1) in F |C − DF (S) but not contained in̄∆F,S,C ,
such thatc1 = a, cn = b, and(ci, ci+1) ∈ R, for all i with 1 ≤ i < n. Obviously all the
ci’s are contained inF as well, but sincea 6⇒D

F b (recall thatD = A \ ∆i−1
F,S), it must

hold that at least one of theci’s, sayc, has to be contained in∆i−1
F,S . By the induction

hypothesis, we getc ∈ ∆̄F,S,C , a contradiction.

For the⊇-direction of the claim we proceed as follows. By Lemma 3,DF (S) = ∆0
F,S

and thusDF (S) ⊆ ∆F,S . It remains to show
⋃

C∈SCCs(F) ∆F |C−DF (S),(S∩C) ⊆

∆F,S . We show by induction overi that ∆i
F |C−DF (S),(S∩C) ⊆ ∆F,S holds for each

C ∈ SCCs(F). Thus, let us fix aC ∈ SCCs(F) and use∆̄i
F,S,C as a shorthand for

∆i
F |C−DF (S),(S∩C).

Induction base. Leta ∈ ∆̄0
F,S,C . Then, there is ab ∈ (S ∩ C), such thatb attacks

a in F ′ = F |C − DF (S) anda 6⇒A′

F ′ b, whereA′ denotes the arguments ofF ′, i.e.

A′ = C \DF (S). SinceF |C is built from a SCCC of F , it follows thata 6⇒
A\DF (S)
F b.

Sinceb ∈ S, (b, a) ∈ R, andDF (S) = ∆0
F,S (Lemma 3), we geta ∈ ∆1

F,S ⊆ ∆F,S .

Induction step. Leti > 0 and assumē∆j
F,S,C ⊆ ∆F,S for all j < i. Let a ∈ ∆̄i

F,S,C .

Then, there is ab ∈ (S ∩ C), such thatb attacksa in F ′ anda 6⇒D′

F ′ b, whereD′ =
A′ \ ∆̄i−1

F,S,C . Towards a contradiction, supposea /∈ ∆F,S . Sinceb ∈ S and(b, a) ∈ R,
it follows that there exist argumentsc1, . . . , cn (n > 1) in F \ ∆F,S , such thatc1 = a,
cn = b, and(ci, ci+1) ∈ R, for all i with 1 ≤ i < n. All theseci’s are thus contained in
the same component asa, and moreover theseci’s cannot be contained inDF (S), since
DF (S) ⊆ ∆F,S . Thus, they are contained inF |C − DF (S), but sincea 6⇒D′

F ′ b, there is
at least one suchci, sayc, contained in∆̄i−1

F,S,C . By the induction hypothesis,c ∈ ∆F,S ,
a contradiction. ¤

We now are able to obtain the desired relation.

Lemma 5 For any AFF = (A,R) and any setS ∈ cf (F), ∆F,S = RDF (S).

Proof. The proof is by induction overℓF (S).

Induction base. ForℓF (S) = 1, |SCCs(F)| = 1 by Definition 6. From this and Defi-
nition 7, we obtainRDF (S) = DF (S) = ∅. By Lemma 3,∆0

F,S = DF (S) = ∅. By
definition,∆F,S = ∅ follows from∆0

F,S = ∅.

Induction step. LetℓF (S) = n and assume the claim holds for all pairsF ′, S′ ∈ cf (F ′),
such thatℓF ′(S′) < n. In particular, this holds forF ′ = F |C − DF (S) andS′ = (S ∩
C), with C ∈ SCCs(F). Note that(S ∩C) is indeed conflict-free inF |C − DF (S). By
definition,RDF (S) = DF (S)∪

⋃
C∈SCCs(F) RDF |C−DF (S)(S ∩C) and by Lemma 4,

∆F,S = DF (S) ∪
⋃

C∈SCCs(F) ∆F |C−DF (S),S∩C . Using the induction hypothesis, i.e.
∆F |C−DF (S),S∩C = RDF |C−DF (S)(S ∩ C), the assertion follows. ¤

We finally reached our main result in this section, i.e. an alternative characterization
for cf2 semantics, where the need for recursion is delegated to a fixed-point operator.

Theorem 1 For any AFF , cf2 (F) = {S | S ∈ cf(F) ∩ mcf ([[F − ∆F,S]])}.

Proof. The result holds by the following observations. By Lemma 2,S ∈ cf2 (F) iff
S ∈ mcf ([[F − RDF (S)]]). Moreover, from Lemma 5, for anyS ∈ cf (F), ∆F,S =
RDF (S). Finally,S ∈ cf2 (F) impliesS ∈ cf (F) (see [1], Proposition 47). ¤

a

b

c

d

e

g

i

Figure 3. Graph of instance[[F − ∆F,S]] of Example 2.

a

b

c f

g

h

i

Figure 4. Graph of instance[[F − ∆F,S′]] of Example 2.

Example 2 To exemplify the behavior of∆F,S and [[F − ∆F,S]], we consider the AF
F andS = {a, d, e, g, i} from Example 1. In the first iteration of computing the lfp of
∆F,S , we have∆F,S(∅) = {f} because the argumentf is the only one which is attacked
by S but its attackerd is not reachable byf in F . In the second iteration, we obtain
∆F,S({f}) = {f, h}, and in the third iteration we reach the lfp with∆F,S({f, h}) =
{f, h}. Hence,[[F − ∆F,S]] of the AFF wrt S is given by

[[F − ∆F,S]] =
(
{a, b, c, d, e, g, i}, {(a, b), (b, c), (c, a)}

)
.

Figure 3 shows the graph of[[F−∆F,S]]. As is easily checkedS ∈ mcf ([[F−∆F,S]]) as
expected, sinceS ∈ cf2 (F). For comparison, Figure 4 shows the graph of[[F −∆F,S′]]
wrt thecf2 extensionS′ = {b, f, h} consisting of two SCCs.

4. ASP-Encodings

In this section, we first give a brief overview of ASP (to be more precise, logic program-
ming under the answer-set semantics [8]). Then, we use our novel characterization to im-
plement thecf2 semantics under this paradigm. To this end, we provide a fixedprogram
πcf2 which, augmented with an input database representing a given AF F , has its answer
sets in a one-to-one correspondence to thecf2 extensions ofF . For more background on
ASP, we refer to [9].

An atom is an expressionp(t1, . . . , tn), wherep is apredicateof arity n ≥ 0 and
eachti is either a variable or a constant from a domainU . We suppose that a total order
< over the domain elements is available.5 An atom isgroundif it is free of variables. By
BU we denote the set of all ground atoms overU . A rule r is of the form

5ASP-solvers as DLV [9], which is underlying our system ASPARTIX, usually provide such an order for the
domain elements of the currently given program.

a :- b1, . . . , bk, not bk+1, . . . , not bm,

with m ≥ k ≥ 0 , and wherea, b1, . . . , bm are atoms, and “not ” stands fordefault
negation. We identify theheadof such a ruler asH(r) = a and also useB+(r) =
{b1, . . . , bk} andB−(r) = {bk+1, . . . , bm} to denote the positive, and resp., negative
body ofr. A rule r is ground if no variable occurs inr. An (input) databaseis a set of
ground rules with empty body. A program is a finite set of rules. For a programP and an
input databaseD, we writeP(D) instead ofD∪P. Gr(P) is the set of rulesrσ obtained
by applying, to each ruler ∈ P, all possible substitutionsσ from the variables inP to
the constants inP.

An interpretationI ⊆ BU satisfiesa ground ruler iff H(r) ∈ I wheneverB+(r) ⊆
I andB−(r)∩ I = ∅. A programP is satisfied by an interpretationI, iff I satisfies each
rule inGr(P). I ⊆ BU is ananswer setof P iff it is a subset-minimal set satisfying

PI = {H(r) :-B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(P)}.

For a programP, we denote the set of its answer sets byAS(P).

We now turn to our encodingπcf2 which computescf2 extension along the lines
of Theorem 1. For a better understanding, we splitπcf2 into several modules which we
explain in an informal manner. These modules implement the following steps, given an
AF F = (A,R):

1. Guessthe conflict-free setsS ⊆ A of F .
2. For eachS, compute the set∆F,S .
3. For eachS, derive theinstance[[F − ∆F,S]].
4. CheckwhetherS is maximal conflict-free in[[F − ∆F,S]].

To start with, let us first fix that a given AFF = (A,R) is presented toπcf2 as a database

F̂ = { arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R }.

1. The guessing module.The following rules guess, when augmented byF̂ for an AF
F = (A,R), any subsetS ⊆ A (to be precise, for an argumenta ∈ A, atom in(a)
indicates thata ∈ S; while atomout(a) indicates thata /∈ S) and then check whether
the represented guessS is conflict-free inF :

πcf = { in(X) :-not out(X), arg(X);

out(X) :-not in(X), arg(X);

:- in(X), in(Y), att(X,Y) }.

2. The fixed-point module.Here we use the auxiliary predicatesinf(·), succ(·, ·) and
sup(·) which identify an infimum, a successor function and a supremum for arguments
with respect to the previously mentioned order<.6 We exploit this order to iterate over
the operator∆F,S(·). GivenF = (A,R), by definition of∆F,S it is sufficient to compute
at most|A| such iterations to reach the fixed-point. Let us now present the module and
then explain its behavior in more detail.

6For more details, we refer to [7], where a moduleπ< is given which defines these predicates.

πreach = { arg_set(N,X) :- arg(X), inf(N); (3)

reach(N,X, Y) :- arg_set(N,X), arg_set(N,Y), att(X,Y); (4)

reach(N,X, Y) :- arg_set(N,X), att(X,Z), reach(N,Z, Y); (5)

d(N,X) :- arg_set(N,Y), arg_set(N,X), in(Y), att(Y,X),

not reach(N,X, Y); (6)

arg_set(M,X) :- arg_set(N,X),not d(N,X), succ(N,M) }. (7)

Rule (3) first copies all arguments into a set indexed by the infimum which initiates the
computation. The remaining rules are applicable to arbitrary indices, whereby rule (7)
copies (a subset of the) arguments from the currently computed set into the “next” set
using the successor functionsucc(·, ·). This guarantees a step-by-step computation of
arg_set(i, ·) by incrementing the indexi. The functioning of rules (4)–(7) is as follows.
Rules (4) and (5) compute a predicatereach(n, x, y) indicating that there is a path from
argumentx to argumenty in the given frameworkrestricted to the arguments of the
current setn. In rule (6),d(n, x) is obtained for all argumentsx which are component-
defeated byS in this restricted framework. In other words, ifn is thei-th argument in the
order<, d(n, x) carries exactly those argumentsx which are contained in∆i

F,S . Finally,
rule (7) copies arguments from the current set which arenot component-defeated to the
successor set.

3. The instance module.As already outlined above, if the supremumm is reached
in πreach, we are guaranteed that the derived atomsarg_set(m,x) characterize exactly
those argumentsx from the given AF which are not contained in∆F,S . It is thus now
relatively easy to obtain the instance[[F − ∆F,S]] which is done below via predicates
arg_new(·) andatt_new(·, ·).

πinst = { arg_new(X) :- arg_set(M,X), sup(M);

att_new(X,Y) :- arg_new(X), arg_new(Y), att(X,Y),

reach(M,Y,X), sup(M) }.

4. The checking module.It remains to verify whether the initially guessed setS is a
cf2 extension. To do so, we need to check whetherS is maximal conflict-free in the
instance[[F − ∆F,S]]. The following module does this job by checking whether only
those arguments are not contained inS, for which an addition toS would yield a conflict.

πmcf = { conflicting(X) :- att_new(Y,X), out(X), in(Y);

conflicting(X) :- att_new(X,Y), out(X), in(Y);

conflicting(X) :- att_new(X,X);

:-not conflicting(X), out(X), arg_new(X) }.

We now have our entire encodingπcf2 = πcf ∪π< ∪πreach∪πinst ∪πmcf available
(recall that we have not given here the definition ofπ<; see [7] for the details). The
desired correspondence between answer-sets andcf2 extensions is as follows.

Theorem 2 LetF be an AF. Then, (i) for eachS ∈ cf2 (F), there is anI ∈ AS(πcf2 (F̂))

with S = {a | in(a) ∈ I}; (ii) for each I ∈ AS(πcf2 (F̂)), {a | in(a) ∈ I} ∈ cf2 (F).

5. Discussion and Conclusions

In this paper, we introduced an alternative characterization for thecf2 semantics which
is based on a certain fixed-point operator in order to avoid the more involved recursions
from the original definition [1]. This new characterizationallowed us to provide a rela-
tively succinct ASP-encoding for computingcf2 extensions which has been incorporated
to the ASP-based argumentation system ASPARTIX. Extendingour techniques to other
SCC-recursive semantics [1] is ongoing work.

Previous work [12] has shown thatcf2 extensions can be characterized using a dif-
ferent (however, not implemented) semantics for logic programs. In the same paper, com-
plexity results forcf2 semantics have been reported, in particular that the verification
problem (i.e. checking whether a given set is acf2 extension) can be decided in polyno-
mial time. We note that this result is reflected in our encodings by the fact that (unstrat-
ified) negation is only used for guessing a candidate set, while the verification part does
not contain any costly programming concepts (in particular, we could avoid the use of
disjunction which is necessary to capture more involved semantics; see [7] for details).

References

[1] P. Baroni, M. Giacomin, and G. Guida. SCC-Recursiveness:A General Schema for Argumentation
Semantics.Artif. Intell., 168(1-2):162–210, 2005.

[2] M. Caminada. Semi-Stable Semantics.Proc. COMMA’06, volume 144 ofFAIA, pages 121–130. IOS
Press, 2006.

[3] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczynski. The Second Answer Set Pro-
gramming Competition.Proc. LPNMR’09, volume 5753 ofLNCS, pages 637–654. Springer, 2009.

[4] P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games.Artif. Intell., 77(2):321–358, 1995.

[5] P. M. Dung, P. Mancarella, and F. Toni. Computing Ideal Sceptical Argumentation.Artif. Intell., 171(10-
15):642–674, 2007.

[6] P. E. Dunne and M. Wooldridge. Complexity of Abstract Argumentation.Argumentation in Artificial
Intelligence, pages 85–104. Springer, 2009.

[7] U. Egly, S. A. Gaggl, and S. Woltran. Answer-Set Programming Encodings for Argumentation Frame-
works. Accepted for publication inArgument and Computation. Available as Technical Report DBAI-
TR-2008-62, Technische Universität Wien, 2008.

[8] M. Gelfond and V. Lifschitz. Classical Negation in LogicPrograms and Disjunctive Databases.New
Generation Comput., 9(3/4):365–386, 1991.

[9] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, Simona Perri, and Francesco Scarcello. The DLV
System for Knowledge Representation and Reasoning.ACM Trans. Comput. Log., 7(3):499–562, 2006.

[10] I. Niemelä. Logic Programming with Stable Model Semantics as a Constraint Programming Paradigm.
Ann. Math. Artif. Intell., 25(3–4):241–273, 1999.

[11] J. C. Nieves, M. Osorio, and U. Cortés. Preferred Extensions as Stable Models.Theory and Practice of
Logic Programming, 8(4):527–543, 2008.

[12] J. C. Nieves, M. Osorio, and C. Zepeda. Expressing Extension-Based Semantics Based on Stratified
Minimal Models.Proc. WoLLIC’09, volume 5514 ofLNCS, pages 305–319. Springer, 2009.

[13] M. Osorio, C. Zepeda, J. C. Nieves, and U. Cortés. Inferring Acceptable Arguments with Answer Set
Programming.Proc. ENC’05, pages 198–205. IEEE Computer Society, 2005.

[14] T. Wakaki and K. Nitta. Computing Argumentation Semanticsin Answer Set Programming.Proc.
JSAI’08, volume 5447 ofLNCS, pages 254–269. Springer, 2008.

