
A Framework for Programming with Module
Consequences?

Wolfgang Faber1 and Stefan Woltran2

1 University of Calabria, Italy
wf@wfaber.com

2 Vienna University of Technology, Austria
woltran@dbai.tuwien.ac.at

Abstract. We present a framework which allows to combine answer-set pro-
grams in a way that consequences (rather than answer sets themselves) of pro-
grams can be used as input to other programs. Situations in which such a compo-
sition of programs is required appear in many practical application problems. So
far, to deal with such problems, multiple calls to answer-set solvers were usually
indispensable, as a direct ASP encoding is often much less obvious. In addition,
we provide a technique for compiling such frameworks into a single ASP program
which consequently can be evaluated by a single call to an answer-set solver. Our
approach relies on the recently introduced concept of manifold programs which
make use of weak constraints to identify consequences of programs.

1 Introduction

In the last decade, Answer-Set Programming (ASP) [1, 2], also known as A-Prolog
[3, 4], has emerged as a declarative programming paradigm. ASP is well suited for
modelling and solving problems which involve common-sense reasoning, and has been
fruitfully applied to a wide variety of applications including diagnosis, data integration,
configuration, and many others. This development was fueled by the efficiency of the
latest tools for processing ASP programs (so-called ASP solvers) which reached a state
that makes ASP applicable for problems of practical importance [5]. The most frequent
use of ASP is to compute answer sets (usually stable models) of a logic program from
which the solutions of the problem encoded by the program can be obtained.

A somewhat neglected aspect of ASP are its capabilities in terms of consequence
relations (or, more general, using queries over answer sets), which are firmly rooted in
the tradition of nonmonotonic reasoning. Different to classical settings, in nonmono-
tonic reasoning there is no canonical consequence relation—the two most studied ones
are brave and cautious consequence (sometimes also termed as brave and cautious rea-
soning); the former is also known as credulous or possible reasoning, the latter is also
referred to as skeptical or certain reasoning. In the context of ASP, one is usually inter-
ested in a subset of the atomic brave or cautious consequences, which corresponds to a

? This work was supported by the Vienna Science and Technology Fund (WWTF), grant ICT08-
028, and by M.I.U.R. within the Italia-Austria internazionalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni e tecniche di ottimizzazione”.

generalization of query answering for databases. In this sense, ASP can also be seen as
an evolution of Datalog, a logical database query language.

As an example scenario, let us consider a problem stemming from database systems.
A database is inconsistent, if a given database instance does not satisfy some of the
constraints imposed. One could argue that the creation of inconsistent databases should
be inhibited, but it is also obvious that this is not always possible: For instance, when
integrating data, that is, whenever only partitions of the data are maintained in a locally
consistent state (for example due to permissions or physical distribution), the merged
data is not guaranteed to be consistent. Still, one would like to work with such data.

An attractive approach to dealing with inconsistent data is to consider minimal re-
pairs, that is, considering minimal modifications of the data that establish a consis-
tent state. ASP has been successfully employed for specifying and computing mini-
mal repairs (see, e.g., [6]). In general, there is no unique minimal repair, and the usual
workaround is to take a conservative approach and consider those parts of the database
which hold in each minimal repair. In the ASP setting, this neatly corresponds to con-
sidering the cautious consequences of the program encoding the database repairs.

However, as mentioned earlier, support for consequence relations is somewhat lim-
ited in current answer-set programming tools: Not all ASP systems support computing
atomic consequences directly, and even if they do, it is usually done as a final process-
ing step, in the sense that it is not possible to use the atomic consequences in the same
run in order to do further reasoning. One could try to simulate this kind of reasoning
by adding additional rules to the program over which the consequences are computed.
However, the following simple example demonstrates the problems of this approach:
The program {a :-not b ; b :-not a} has two answer sets, {a} and {b}, and so its
brave atomic consequences are a and b, while there is no cautious atomic consequence.
In order to represent the question whether at least one of a or b is a consequence, one
could try to add {q :- a ; q :- b} to the program and check whether q is an atomic
consequence. While this works correctly for brave consequences (a positive answer),
it does not for cautious consequences. The reason is that q is indeed a cautious con-
sequence of the modified program thus yielding a positive answer to the query, while
neither a nor b is a cautious atomic consequence.

Actually, one would hope to be able to use as many language features that ASP
provides in order to reason with atomic consequences of a program, but as seen in the
simple example above, existing query interfaces are insufficient for this task. Indeed, if
one wants to employ recursion, a hypothetical method of endowing the original program
by additional rules is quite obviously inadequate in most cases.

In this work, we introduce a framework that overcomes the limitations outlined
above. In particular, we propose a language that encapsulates computing brave, cautious
or definite3 consequences of a program, which can then be utilized in a larger ASP
program.

We discuss properties and limitations of the language and describe techniques for
implementing a system supporting the language. In particular, we propose an extension
of manifold programs, that we have recently proposed as a method for compiling query
answering into ASP in [8]. In particular, a manifold program MP of an ASP program

3 An alternative notion proposed in [7].

P allows for identifying all consequences of a certain type (variants exist for brave,
cautious, and definite consequences) within a single answer set. The framework we
present here goes beyond the concept of a single manifold program which facilitates
query answering wrt. a single program. Our framework permits that the results (i.e.,
consequences of a certain type) of modules can serve as input for further modules which
compile different queries of their own, and so forth. A so-called base program finally
collects the result necessary for the overall task and computes its own answer sets.
These sets are identified as the answer sets of the entire framework.

However, there is a price to be paid for identifying program consequences by mani-
folding: WhileMP contains optimization constructs (in [8] weak constraints were used,
cf. [9]), P should not contain any optimization constructs. There is also a reason for this:
While deciding whether one ground atom is a brave (respectively cautious) consequence
is NP-complete for normal ground programs and ΣP

2 -complete for disjunctive ground
programs (respectively co-NP- and ΠP

2 -complete), enumerating brave (or cautious)
consequences is complete for the complexity class FPNP

|| for normal ground programs

and for FPΣ
P
2
|| for disjunctive ground programs. It follows that unless the polynomial

hierarchy collapses, a program enumerating brave or cautious consequences without
optimization constructs does not exist. Moreover, in [9] the relevant decision problems
for programs with weak constraints (without different levels) have been shown to be
complete for the complexity class ΘP2 (ΘP3 in the presence of disjunction), from which

the function complexity FPNP
|| (FPΣ

P
2
||) can be obtained. It follows that the presence of

weak constraints is necessary given our current knowledge on NP ?= P and also not
excessive.

2 Preliminaries

In this section, we review the basic syntax and semantics of ASP with weak constraints,
following [10], to which we refer for a more detailed definition.

An atom is an expression p(t1, . . .,tn), where p is a predicate of arity α(p) = n ≥ 0
and each ti is either a variable or a constant. A literal is either an atom a or its negation
not a. A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n+m > 0, and where a1, . . . , an, b1, . . . , bm are atoms.
The head of r is the set H(r) = {a1, . . . , an}, and the body of r is the set B(r) =

{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bm}. We will sometimes denote a rule r as H(r) :-B(r).

A weak constraint [9] is an expression wc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

where m ≥ k ≥ 0 and b1, . . . , bm are literals, while weight(wc) = w (the weight)
and l (the level) are positive integer constants or variables. For convenience, w and/or
l may be omitted and are set to 1 in this case. The sets B(wc), B+(wc), and B−(wc)
are defined as for rules. We will sometimes denote a weak constraint wc as :∼ B(wc).

A program P is a finite set of rules and weak constraints. Rules(P) denotes the
set of rules and WC(P) the set of weak constraints in P . wPmax and lPmax denote the
maximum weight and maximum level over WC(P), respectively. A program (rule,
atom) is propositional or ground if it does not contain variables. A program is called
strong if WC(P) = ∅, and weak otherwise.

For any program P , let UP be the set of all constants appearing in P (if no constant
appears in P , an arbitrary constant is added to UP); let HBP be the set of all ground
literals constructible from the predicate symbols appearing in P and the constants of
UP ; and let Ground(P) be the set of rules and weak constraints obtained by applying,
to each rule and weak constraint in P all possible substitutions from the variables in
P to elements of UP . UP is usually called the Herbrand Universe of P and HBP the
Herbrand Base of P .

A ground rule r is satisfied by a set I of ground atoms iff H(r) ∩ I 6= ∅ whenever
B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies a ground program P , if each r ∈ P is
satisfied by I . For non-ground P , I satisfies P iff I satisfies Rules(Ground(P)). A
ground weak constraint wc is violated by I , iff B+(wc) ⊆ I and B−(wc)∩ I = ∅; it is
satisfied otherwise.

Following [11], a set I ⊆ HBP of atoms is an answer set for a strong program P
iff it is a subset-minimal set that satisfies the reduct

P I = {H(r) :-B+(r) | I ∩B−(r) = ∅, r ∈ Ground(P)}.

A set I ⊆ HBP of atoms is an answer set for a weak program P iff I is an an-
swer set of Rules(P) and HGround(P)(I) is minimal among all the answer sets of
Rules(P), where the penalization function HP (I) for weak constraint violation of a
ground program P is defined as follows:

HP (I) =
∑lPmax
i=1

(
fP (i) ·

∑
w∈NPi (I) weight(w)

)
fP (1) = 1, and
fP (n) = fP (n− 1) · |WC(P)| · wPmax + 1 for n > 1.

where NP
i (I) denotes the set of weak constraints of P in level i violated by I . For

any program P , we denote the set of its answer sets by AS(P). Note that for programs
having weak constraints only of weight and level 1, HGround(P)(I) amounts to the
number of weak constraints violated in I .

A ground atom a is a brave (sometimes also called credulous or possible) conse-
quence of a program P , denoted P |=b a, if a ∈ A holds for at least one A ∈ AS(P).
A ground atom a is a cautious (sometimes also called skeptical or certain) consequence
of a program P , denoted P |=c a, if a ∈ A holds for all A ∈ AS(P). A ground atom
a is a definite consequence [7] of a program P , denoted P |=d a, if AS(P) 6= ∅ and
a ∈ A holds for all A ∈ AS(P). The sets of all brave, cautious, definite consequences
of a program P are denoted as BC(P), CC(P), DC(P), respectively.

3 Consequence Modules

A module essentially consists of a program, a collection of partially instantiated atoms,
and a reasoning mode. It can also receive some predicates as input. The idea is that this

module represents those consequences of the program under the specified reasoning
mode which match one of the atoms.

Definition 1. A consequence module (or module, for short) is a quadruple 〈P, I,O,m〉,
where P (the module program) is a strong program, I (the input predicates) is a set of
predicates, O (the output atoms) is a set of atoms (possibly containing variables), and
m (the reasoning mode) is one of brave, cautious, definite.

A consequence module framework (or consequence module program) F = 〈B,M〉
consists of a strong program B (called the base program) and a setM of consequence
modules.

Although the realization of a module looks very similar to known concepts (e.g.
modules as defined in [12] or the signature of module atoms in [13]), we remark that
the concept of a reasoning mode clearly separates our approach from previous ones. In
particular, the output of a module in our approach is just a set of facts (depending on the
chosen reasoning mode, this set is obtained from the answer sets of the modules) which
serves as input to further modules, while in other approaches the output is usually a
collection of answer sets, which have to combined with answer sets of other modules.

We define the universe UF of a consequence module framework F as the set of all
constants appearing in F (if no constant appears in F , an arbitrary constant is added),
and the base HBF of F as the set of all ground literals constructible from the predicate
symbols appearing in F and the constants of UF .

A consequence module framework is stratified on modules if there are no circular
dependencies through consequence modules. In the following, let Pred(Σ) denote the
set of predicates in a syntactic element Σ.

Definition 2 (Stratification on Modules). A consequence module framework F =
〈B,M〉 is stratified on modules if there exists a level mapping λ (a stratification) from
the set of predicates in F to N, such that for each rule r in B, λ(b) ≤ λ(h) holds for
each b ∈ Pred(B(r)) and h ∈ Pred(H(r)), and for each module 〈P, I,O,m〉 ∈ M,
λ(i) < λ(o) holds for each i ∈ I and o ∈ Pred(O).

In the following, we will consider only consequence module programs, which are
stratified on modules.

The semantics of a stratified consequence module program F is given by an evalu-
ation along one of its level mappings. In other words, the answer sets of F are obtained
by simply running the modules in an order of stratification and applying the modules
query on the result of each.

Definition 3. Given a stratified consequence module framework F = 〈B,M〉 and λ
one of its stratifications, let, for each i ∈ N, Bi = {r ∈ B | i = max{λ(h) | h ∈
H(r)}} andMi = {〈P, I,O,m〉 ∈ M | i = max{λ(o) | o ∈ Pred(O)}}.

Definition 4. For a module M = 〈P, I,O,m〉 and a set A of ground atoms, AS(A .
M) = {oσ | o ∈ O, oσ ∈ X}, where σ is a substitution, X = BC(P ∪ A) if
m = brave, X = CC(P ∪A) if m = cautious, X = DC(P ∪A) if m = definite. For
a setM of modules, let AS(A .M) =

⋃
M∈MAS(A .M).

Given a stratified consequence module framework F = 〈B,M〉, we then define the
following sequence

AS0(F) = AS(B0) ∪AS(∅ .M0)
ASi(F) = AS(ASi−1(F) ∪Bi) ∪AS(ASi−1(F) .Mi), for i > 0

in order to obtain AS(F) = ASn(F) where n = max{λ(p) | p ∈ Pred(F)}.

It is not hard to see that any stratification will lead to the same answer sets.
Note that the semantics of unstratified consequence module frameworks cannot be

defined in this way because of circular dependencies. In this paper we refrain from
studying unstratified settings, as their intended semantics is not obvious and possibly
gives rise to complexity issues. In a similar way, we do not consider nested modules
(that is, occurrences of modules inside module programs). While the intended seman-
tics for these would be more obvious, they would hamper the considerations in Section 5
and possibly also give rise to complexity issues. We believe that the framework in this
paper is sufficiently rich to describe many problems, which incur reasoning subtasks,
in a natural way. We conjecture that considering an unrestricted language not requiring
stratification and allowing for nested consequence modules would result in a relatively
high complexity, while the language considered here essentially stays inside ASP com-
plexity bounds.

4 Applications

In this section, we study some example encodings using consequence modules. The
first one is a well-known problem from propositional logic, which we will describe in
detail, the second one is from planning. Another example would be computing the ideal
extension for abstract argumentation frameworks, which was studied in [8], and which
we omit here for space reasons.

4.1 The Unique Minimal Model Problem

As a first example, we show how to encode the problem of deciding whether a given
propositional formula ϕ has a unique minimal model. This problem is known to be in
ΘP2 and to be co-NP-hard (the exact complexity is an open problem). Our encodings
will rely on the following observation which is obvious if one considers models as sets
of those atoms which are assigned to true: Let I be the intersection of all models of ϕ,
then ϕ has a unique minimal model iff I is also a model of ϕ.

We will use a simple consequence module framework for this task consisting of
a single module which will take care of computing the intersection of all models of
a propositional CNF formula ϕ, and a simple base program which, on the one hand,
contains a suitable representation of the formula ϕ (and passes this to the module), and,
on the other hand, checks whether the result of the module yields a model of ϕ.

Let us make this idea more precise. To start with, we fix the representation of CNFs.
Let ϕ (over atoms A) be of the form

∧n
i=1 ci. Then,

Dϕ = {at(a) | a ∈ A} ∪ {cl(i) | 1 ≤ i ≤ n} ∪

{pos(a, i) | atom a occurs positively in ci} ∪
{neg(a, i) | atom a occurs negatively in ci}.

For the module, we require a program whose answer sets are in a one-to-one corre-
spondence to models of formulas. For this purpose, consider the program SAT as the
set of the following rules.

true(X) :- not false(X), at(X);
false(X) :- not true(X), at(X);

ok(C) :- true(X),pos(X,C);
ok(C) :- false(X),neg(X,C);

:- not ok(C), cl(C).

It can be checked that the answer sets of SAT∪Dϕ are in a one-to-one correspondence
to the models (over A) of ϕ. In particular, for any model I ⊆ A of ϕ there exists an
answer set M of SAT ∪Dϕ such that I = {a | true(a) ∈M}.

Our consequence module will now be given by

SATcautious = 〈SAT, {at, cl,pos,neg}, {true(X)}, cautious〉.

In fact, using Dϕ as input to SATcautious, we obtain a result which characterizes those
atoms in ϕ which are true in all models of ϕ.

For the base program, let us now define the program MODELCHECK as the set
of the following rules

ok(C) :- true(X),pos(X,C);
ok(C) :-not true(X),neg(X,C);
:-not ok(C), cl(C).

We immediately obtain the following result.

Theorem 1. For any CNF formula ϕ, it holds that ϕ has a unique minimal model, if
and only if the framework 〈Dϕ∪MODELCHECK, {SATcautious}〉 has an answer set.

A slight adaption of this encoding allows us to formalize reasoning under the closed-
world assumption (CWA), cf. [14], over a propositional knowledge base ϕ, since the
atoms a in ϕ, for which the corresponding atoms true(a) are not contained in any
answer set of the program SAT on input Dϕ, i.e. those atoms true(a) not contained in
the output of the module SATcautious on input Dϕ, are exactly those which are added
negated to ϕ for CWA-reasoning. In other words, the framework,

〈Dϕ ∪ {false(X) :-not true(X), at(X)}, {SATcautious}〉

represents the closed-world closure of ϕ. Further extensions of the base program can
now be used to formulate CWA-reasoning problems.

4.2 Planning

Let us consider secure planning, which is also known as conformant or certain plan-
ning [15–18]. Given a description of a nondeterministic transition system involving
states (composed of fluents) and actions (occurring between states), a secure plan is a
sequence of actions (a plan), which allows for reaching a goal state in any possible out-
come of action execution. This means that, starting from a set of initial states, executing
a secure plan must not get “stuck” during execution (the subsequent action must always
be executable), and must eventually reach the goal state.

Let us consider the problem of deciding whether a given plan is secure. For the
language K of [17], some ASP encodings have been defined in [19]. Let us assume the
availability of a program TRAJ (for a given transition system described in K) that has
one answer set for each trajectory for a sequence of actions given in the input, where
a trajectory is a sequence of states along a path in the given transition system that is
labeled by the sequence of actions in the input. For so-called proper transition systems
(cf. [17]) it is sufficient to check whether all trajectories end in a goal state.

We can then define a consequence module

TRAJcautious = 〈TRAJ, {a1, . . . , an}, {f1(t1), . . . , fn(tn)}, cautious〉.

where a1, . . . , an are predicates representing actions (and thus plans), and f1(t1), . . . ,
fn(tn) are atoms representing a goal state. Secure plan checking can then be captured
by a framework

〈AP ∪G = { :-not g ; g :- f1(t1), . . . , fn(tn)}, {TRAJcautious}〉

where AP is an encoding of the plan to be checked. If there is an answer set, the plan is
secure.

Now assume that INITEX is a program that computes initial states of a given tran-
sition system and which moreover derives an atom i with each initial state (cf. [19]).
We define the consequence module

INITEXbrave = 〈INITEX, ∅, {i}, brave〉.

Moreover, assume the existence of a program ENUMPLANS, which whenever i holds,
generates as answer sets all possible plans of a specified length (cf. [19]). Finding se-
cure plans for proper planning domains can then be accomplished by the following
framework.

〈ENUMPLANS ∪G, {INITEXbrave,TRAJcautious}〉

5 Transforming Consequence Modules to ASP

While one could implement the suggested language using oracles formed of ASP sys-
tems (see [20] for a recent realization of such an approach), and so lifting the framework
on a metalevel, we propose an alternative method which allows for an implementation
using ASP itself. We make use of manifold programs that we have recently proposed in
[8], and elaborate on them.

5.1 Manifold Programs

The main idea of manifold programs is to obtain a translation which creates a copy of
a given program for each element of a subset of its Herbrand base. Let us first consider
the simpler case of propositional programs.

We create a copy of a given program P for each atom a in a given set S, whereby
the transformation guarantees the existence of an answer set by enabling the copies
conditionally.

Definition 5. For a strong propositional program P and S ⊆ HBP , define its manifold
as

P trS =
⋃
r∈P
{H(r)a :- {c} ∪B(r)a | a ∈ S} ∪ {c :-not i ; i :-not c}.

where Ia = {pa | atom p ∈ I}∪{not pa | not p ∈ I} for a set I of atoms and an atom
a. We assume HBP ∩HBP trS

= ∅, that is, all symbols in P trS are assumed to be fresh.

Example 1. Consider Φ = {p ∨ q :- ; r :- p ; r :- q} for which AS(Φ) = {{p, r},
{q, r}},BC(Φ) = {p, q, r} andCC(Φ) = DC(Φ) = {r}. When forming the manifold
for HBΦ = {p, q, r}, we obtain

ΦtrHBΦ =

pp ∨ qp :- c ; rp :- c, pp ; rp :- c, qp ; c :-not i ;
pq ∨ qq :- c ; rq :- c, pq ; rq :- c, qq ; i :-not c ;
pr ∨ qr :- c ; rr :- c, pr ; rr :- c, qr


Note that given a strong program P and S ⊆ HBP , the construction of P trS can

be done in polynomial time (w.r.t. the size of P). The answer sets of the transformed
program consist of (and extend) all combinations (of size |S|) of answer sets of the
original program (augmented by c) plus the special answer set {i} which we shall use
to indicate inconsistency of P .

Example 2. For Φ of Example 1, we obtain thatAS(ΦtrHBΦ
) consists of {i} plus (copies

of {q, r} are underlined for readability)

{c, pp, rp, pq, rq, pr, rr}, {c, qp, rp, pq, rq, pr, rr}, {c, pp, rp, qq, rq, pr, rr},
{c, pp, rp, pq, rq, qr, rr}, {c, qp, rp, qq, rq, pr, rr}, {c, qp, rp, pq, rq, qr, rr},
{c, pp, rp, qq, rq, qr, rr}, {c, qp, rp, qq, rq, qr, rr}.

Using this transformation, each answer set encodes an association of an atom with
some answer set of the original program. If an atom a is a brave consequence of the
original program, then a witnessing answer set exists, which contains the atom aa. The
idea is now to prefer those atom-answer set associations where the answer set is a
witness. We do this by means of weak constraints and penalize each association where
the atom is not in the associated answer set, that is, where aa is not in the answer set
of the transformed program. Doing this for each atom means that an optimal answer set
will not contain aa only if there is no answer set of the original program that contains
a, so each aa contained in an optimal answer set is a brave consequence of the original
program.

Definition 6. Given a strong propositional program P and S ⊆ HBP , let

P bcS = P trS ∪ {:∼ not aa | a ∈ S} ∪ {:∼ i}

Observe that all weak constraints are violated in the special answer set {i}, while in
the answer set {c} (which occurs if the original program has an empty answer set) all
but :∼ i are violated.

Example 3. For the program Φ as given Example 1, ΦbcHBΦ
is given by ΦtrHBΦ

∪ {:∼
not pp ; :∼ not qq ; :∼ not rr ; :∼ i}. We obtain that AS(ΦbcHBΦ

) = {A1, A2},
where A1 = {c, pp, rp, qq, rq, pr, rr} and A2 = {c, pp, rp, qq, rq, qr, rr}, as these two
answer sets are the only ones that violate no weak constraint. We can observe that
{a | aa ∈ A1} = {a | aa ∈ A2} = {p, q, r} = BC(Φ).

For cautious consequences, we use a similar idea, taking into account that if a pro-
gram is inconsistent (in the sense that it does not have any answer set), each atom is a
cautious consequence.

Definition 7. Given a strong propositional program P and S ⊆ HBP , let

P ccS = P trS ∪ {:∼ aa | a ∈ S} ∪ {aa :- i | a ∈ S} ∪ {:∼ i}

Example 4. Recall programΦ from Example 1. We haveΦccHBΦ
= ΦtrHBΦ

∪{:∼ pp ; :∼
qq ; :∼ rr ; pp :- i ; qq :- i ; rr :- i ; :∼ i}. We obtain that AS(ΦccHBΦ

) =
{A3, A4}, where A3 = {c, qp, rp, pq, rq, pr, rr} and A4 = {c, qp, rp, pq, rq, qr, rr}, as
these two answer sets are the only ones that violate only one weak constraint, namely
:∼ rr. We observe that {a | aa ∈ A3} = {a | aa ∈ A4} = {r} = CC(Φ).

Finally we slightly adapt the construction for definite consequences.

Definition 8. Given a strong propositional program P and S ⊆ HBP , let

P dcS = P trS ∪ {:∼ aa; ia :- i; :∼ ia | a ∈ S} ∪ {:∼ i}

Example 5. Recall programΦ from Example 1. We haveΦdcHBΦ
= ΦtrHBΦ

∪{:∼ pp ; :∼
qq ; :∼ rr ; ip :- i ; iq :- i ; ir :- i :∼ ip ; :∼ iq ; :∼ ir ; :∼ i}.As in Example 4,
A3 and A4 are the only ones that violate only one weak constraint, namely :∼ rr, and
thus are the answer sets of ΦdcHBΦ

.

Proposition 1. Given a strong propositional program P and S ⊆ HBP , for any B ∈
AS(P bcS), {b | bb ∈ B} = BC(P) ∩ S; for any C ∈ AS(P ccS), {c | cc ∈ C} =
CC(P) ∩ S; for any D ∈ AS(P dcS), {d | dd ∈ D} = DC(P) ∩ S.

Obviously, one can compute all brave, cautious, or definite consequences of a pro-
gram by choosing S = HBP . We also note that the programs from Definitions 6, 7 and
8 yield multiple answer sets. However each of these yields the same atoms aa, so it is
sufficient to compute one of these. This issue will be addressed in Section 5.2.

We now generalize these techniques to non-ground strong programs. In principle,
one could annotate each predicate (rather than atom as before) with ground atoms of

a subset of the Herbrand Base. However, one can also move the annotations to the
non-ground level: For example, instead of annotating a rule p(X,Y) :- q(X,Y) by the
set {r(a), r(b)} yielding pr(a)(X,Y) :- qr(a)(X,Y) and pr(b)(X,Y) :- qr(b)(X,Y) we
will annotate using only the predicate r and extend the arguments of p, yielding the
compact rule drp(X,Y, Z) :-drq(X,Y, Z) (we use predicate symbols drp and drq rather
than pr and qr just for pointing out the difference between annotation by predicates
versus annotation by ground atoms). In this particular example we have assumed that
the program is to be annotated by all ground instances of r(Z); we will use this assump-
tion also in the following for simplifying the presentation. In practice, one can clearly
add atoms to the rule body for restricting the instances of the predicate by which we
annotate, in the example this would yield pr(X,Y, Z) :- qr(X,Y, Z), dom(Z) where
the predicate dom should be defined appropriately. In the following, recall that α(p)
denotes the arity of a predicate p.

Definition 9. Given an atom a = p(t1, . . . , tn) and a predicate q, let atrq be the atom
dqp(t1, . . . , tn, X1, . . . , Xα(q)) whereX1, . . . , Xα(q) are fresh variables and dqp is a new
predicate symbol with α(dqp) = α(p)+α(q). Furthermore, given a set L of literals, and
a predicate q, let Ltrq be {atrq | atom a ∈ L} ∪ {not atrq | not a ∈ L}.

Note that we assume that even though the variables X1, . . . , Xα(q) are fresh, they
will be the same for each atrq . One could define similar notions also for partially ground
atoms or for sets of atoms characterized by a collection of defining rules, from which
we refrain here for the ease of presentation. We define the manifold program in analogy
to Definition 5, the only difference being the different way of annotating.

Definition 10. Given a strong program P and a set S of predicates, define its manifold
as

P trS =
⋃
r∈P
{H(r)trq :- {c} ∪B(r)trq | q ∈ S} ∪ {c :-not i ; i :-not c}.

Example 6. Consider program Ψ = {p(X) ∨ q(X) :- r(X); ; r(a) :- ; r(b) :- } for
which AS(Ψ) = {{p(a), p(b), r(a), r(b)}, {p(a), q(b), r(a), r(b)}, {q(a), p(b), r(a),
r(b)}, {q(a), q(b), r(a), r(b)}}. Hence, BC(Ψ) = {p(a), p(b), q(a), q(b), r(a), r(b)}
and CC(Ψ) = DC(Ψ) = {r(a), r(b)}. Forming the manifold for S = {p}, we obtain

Ψ trS =
{

dpp(X,X1) ∨ dpq(X,X1) :-dpr(X,X1), c ;
dpr(a,X1) :- c ; dpr(b,X1) :- c ; c :-not i ; i :-not c

}
AS(Ψ trS) consists of {i} plus 16 answer sets, corresponding to all combinations of the
four answer sets in AS(Ψ).

Now we are able to generalize the encodings for brave, cautious, and definite con-
sequences. These definitions are direct extensions of Definitions 6, 7, and 8, the dif-
ferences are only due to the non-ground annotations. In particular, the diagonalization
atoms aa should now be written as dpp(X1, . . . , Xα(p), X1, . . . , Xα(p)) which represent
the set of ground instances of p(X1, . . . , Xα(p)), each annotated by itself. So, a weak
constraint :∼ dpp(X1, . . . , Xα(p), X1, . . . , Xα(p)) gives rise to {:∼ dpp(c1, . . . , cα(p),
c1, . . . , cα(p)) | c1, . . . , cα(p) ∈ U} where U is the Herbrand base of the program in
question, that is one weak constraint for each ground instance annotated by itself.

Definition 11. Given a strong program P and a set S of predicate symbols, let

P bcS = P trS ∪ {:∼ not ∆q | q ∈ S} ∪ {:∼ i}
P ccS = P trS ∪ {:∼ ∆q; ∆q :- i | q ∈ S} ∪ {:∼ i}
P dcS = P trS ∪ {:∼ ∆q; Iq :- i; :∼ Iq | q ∈ S} ∪ {:∼ i}

where ∆q = dqq(X1, . . . , Xα(q), X1, . . . , Xα(q)) and Iq = iq(X1, . . . , Xα(q)).

Proposition 2. Given a strong program P and a set S of predicates, for an arbitrary
A ∈ AS(P bcS), (resp., A ∈ AS(P ccS), A ∈ AS(P dcS)), the set {p(c1, . . . , cα(p)) |
dpp(c1, . . . , cα(p), c1, . . . , cα(p)) ∈ A} is the set of brave (resp., cautious, definite) con-
sequences of P with a predicate in S.

Example 7. Consider again Ψ and S = {p} from Example 6. We obtain Ψ bcS = Ψ trS ∪
{:∼ not dpp(X1, X1) ; :∼ i} and we can check that AS(Ψ bcS) consists of the sets

R∪{dpp(a, a),dpp(b, b),dpq(a, b),dpq(b, a)}, R∪{dpp(a, a),dpp(b, b),dpp(a, b),dpq(b, a)},
R∪{dpp(a, a),dpp(b, b),dpq(a, b),dpp(b, a)}, R∪{dpp(a, a),dpp(b, b),dpp(b, a),dpp(b, a)};

where R = {dpr(a, a),dpr(a, b),dpr(b, a),dpr(b, b)}. For each A of these answer sets we
obtain {p(t) | dpp(t, t) ∈ A} = {p(a), p(b)} which corresponds exactly to the brave
consequences of Ψ with a predicate of S = {p}.
For cautious consequences, Ψ ccS = Ψ trS ∪ {:∼ dpp(X1, X1) ; dpp(X1, X1) :- i ; :∼ i}
and we can check that AS(Ψ ccS) consists of the sets

R∪{dpq(a, a),dpq(b, b),dpq(a, b),dpq(b, a)}, R∪{dpq(a, a),dpq(b, b),dpp(a, b),dpq(b, a)},
R∪{dpq(a, a),dpq(b, b),dpq(a, b),dpp(b, a)}, R∪{dpq(a, a),dpq(b, b),dpp(b, a),dpp(b, a)};

where R = {dpr(a, a),dpr(a, b),dpr(b, a),dpr(b, b)}. For each A of these answer sets we
obtain {p(t) | dpp(t, t) ∈ A} = ∅ and indeed there are no cautious consequences of Ψ
with a predicate of S = {p}.
Finally, for definite consequences, ΨdcS = Ψ trS ∪ {:∼ dpp(X1, X1) ; ip(X1) :- i ; :∼
ip(X1) ; :∼ i}. It is easy to see that AS(ΨdcS) = AS(Ψ ccS) and so {p(t) | dpp(t, t) ∈
A} = ∅ for each answer set A of ΨdcS , and indeed there is also no definite consequence
of Ψ with a predicate of S = {p}.

These definitions exploit the fact that the semantics of non-ground programs is de-
fined via their grounding with respect to their Herbrand Universe. So the fresh variables
introduced in the manifold will give rise to one copy of a rule for each ground atom. In
practice, ASP systems usually require rules to be safe, that is, that each variable occurs
(also) in the positive body. The manifold for a set of predicates may therefore contain
unsafe rules (because of the fresh variables). But this can be repaired by adding a do-
main atom domq(X1, . . . , Xm) to a rule which is to be annotated with q. This predicate
can in turn be defined by a rule domq(X1, . . . , Xm) :-u(X1), . . . , u(Xm) where u is
defined using {u(c) | c ∈ UP }. One can also provide smarter definitions for domq by
using a relaxation of the definition for q.

5.2 Transforming Consequence Module Frameworks by Manifolding

The main intuition is to replace each module by a suitable manifold program. In par-
ticular, given a module M = 〈P, I,O,m〉 in a framework F , we intend to create its
manifold transform as P bcPred(O) if m = brave, P ccPred(O) if m = cautious, P dcPred(O) if
m = definite. Together with suitable adaptor rules, which map the transformed predi-
cates back to predicates of the original program, these will be joined to the base program
of the framework.

However, there are two main issues to resolve: As remarked earlier, the various
manifold programs may admit more than one answer set, which are equivalent with
respect to the consequences represented in them. Still, in the context of modules we
would like to have a single answer set. The second issue deals with the fact that the
manifold transforms of different modules should not interfere with each other.

The first issue can be dealt with by adding penalties in a way that only one answer
set remains. In order to avoid interference with other weak constraints, these should be
put into a separate level of lower importance. To this end one should fix an arbitrary
order of the ground atoms in X = {dqq(c1, . . . , cα(q), c

′
1, . . . , c

′
α(q)) | ci, c

′
j ∈ UF , ck 6=

c′k} ∪ {dpq(c1, . . . , cα(q), c
′
1, . . . , c

′
α(p)) | p 6= q, ci, c

′
j ∈ UF } and assigning weights of

the exponential sequence 1, 2, 4, 8, . . . to them. This is because each atom should incur
a penalty which is greater than the sum of penalties of all preceding atoms. In particular,
if a0, a1, . . . is an enumeration of X respecting the chosen order, add a weak constraint
:∼ ai.[2i : 1]. The weak constraints of the original manifold programs should be put in
the more important level 2 (higher levels are more important in the semantics of weak
constraints), so all weak constraints introduced in Section 5.1 should be extended by
[1 : 2] (weight 1 is the default for weights, which was implicitly used in Section 5.1).

The weak constraints introduced in this way can be thought of reducing the set of
answer-set candidates in the following way: If answer sets without a0 exist, further
consider only those, otherwise there is no reduction. So the resulting candidates either
all do not contain a0, or all do. Then, among the result, if answer sets without a1 exist,
further consider only those, otherwise there is no reduction. The remaining candidates
do not differ on the presence of a0 and a1. Continuing like this, in the end the remaining
candidates will not differ on the presence of any element in X . If the original set of
answer-set candidates differs only on elements in X , then only one answer set remains.

The second modification regards combinability of manifold programs. We would
like to be able to simply form the union of all manifold programs replacing the modules.
The way in which manifold programs have been defined in Section 5.1, they could
in principle share predicate names, which would lead to unwanted interferences. We
therefore ensure that each manifold program introduces a unique set of predicates by
extending the predicates dqp, iq (pa, ia in the propositional case) and i, c by a string
uniquely identifying the module, which the manifold program represents.

Definition 12. For a module M = 〈P, I,O,m〉, let its manifold transform be defined
as T (M) = PmPred(O), where P brave

Pred(O), P
cautious
Pred(O), P

definite
Pred(O) correspond to the mani-

fold programs of Section 5.1 with the modifications described above.
The adaptor rules for the module M are defined as

AM = {p(t1, . . . , tα(p)) :-dpp(t1, . . . , tα(p), t1, . . . , tα(p)) | p(t1, . . . , tα(p)) ∈ O}

The manifold program for a consequence module framework F = 〈B,M〉 is then
T (F) = B ∪

⋃
M∈M(T (M) ∪AM).

Now we can state the correspondence result.

Proposition 3. For a consequence module framework F , AS(F) = AS(T (F)) ∩
HBF . In fact, there is a one-to-one correspondence between AS(F) and AS(T (F)) ∩
HBF .

Some of the key observations for this correspondence result are that the depen-
dencies of predicates of the base program remain unaltered in T (F), and that module
dependencies between predicates in F become standard dependencies in T (F) via the
predicates introduced by manifolding. This allows for applying the splitting set theo-
rem of [21] to the program without weak constraints, mimicking the sequence ASi(·)
of Definition 4. However, the manifold parts of T (F) give rise to many answer-set can-
didates, among which there are also answer sets that contain exactly the consequences
under the respective reasoning mode. The combined program T (F) thus will contain
many answer-set candidates, but among these there are also precisely the answer sets of
the framework, because the latter are defined by replacing the modules by the respective
consequences.

The combination of all weak constraints then eliminates all but these candidates.
Combining the weak constraints, considering first only those weak constraints described
in Section 5.1, has the desired effect because the symbols introduced by T (M) are not
contained in any other T (M ′). Because of this and since these weak constraints all
have weight 1, any global optimum must also be an optimum locally for any T (M).
Therefore, without adding the additional weak constraints for enforcing uniqueness,
the first part of Proposition 3 already holds. One can then show that the differences
between multiple answer sets of T (F) representing a single answer set of F is only due
to atoms in the sets X described above, which are reduced to precisely one using the
method described earlier, thus obtaining a one-to-one correspondence.

6 Conclusion

In this paper, we provided a novel framework for specifying ASP programs, which in-
volve the consequences of subprograms, defining syntax and semantics of the proposed
language. We gave examples for problems that possess a comparably natural represen-
tation in this language, while a traditional ASP specification is not obvious. Moreover,
we proposed a transformation of consequence module frameworks to ASP with weak
constraints, based on an adaption of the recently proposed manifold program technique,
which allows for using a standard ASP solver supporting weak constraints for comput-
ing answer sets of consequence module frameworks.

For future work, we are interested in studying the effects of lifting the restriction
of module stratification and of module nesting. We would also like to explore the
possibility to use alternative optimization constructs offered by ASP solvers, such as
minimize supported by lparse and gringo, in order not to be restricted by the

availability of weak constraints. Also on our agenda is analyzing the relationship be-
tween our framework and other proposals for modular ASP (see, e.g. [22, 13]). Finally,
we would also like to implement a system that supports consequence module program-
ming.

References

1. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective. (1999) 375–
398

2. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. AMAI 25(3–4) (1999) 241–273

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2002)

4. Gelfond, M.: Representing knowledge in A-Prolog. In: Computational Logic: From Logic
Programming into the Future. LNCS 2408, (2002) 413–451

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17

6. Bravo, L., Bertossi, L.E.: Logic programs for consistently querying data integration systems.
In: IJCAI 2003, (2003) 10–15

7. Saccà, D.: Multiple total stable models are definitely needed to solve unique solution prob-
lems. Inf. Process. Lett. 58(5) (1996) 249–254

8. Faber, W., Woltran, S.: Manifold answer-set programs for meta-reasoning. In: LPNMR’09.
LNCS 5753, (2009) 115–128

9. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE
Trans. Knowl. Data Eng. 12(5) (2000) 845–860

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. TOCL 7(3) (2006) 499–562

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4) (1991) 365–386

12. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for
smodels programs. TPLP 8(5-6) (2008) 717–761

13. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic program-
ming revisited. In: Proceedings of the ICLP’09. LNCS 5649, (2009) 145–159

14. Reiter, R.: On closed world data bases. In: Logic and Databases. Plenum Press (1978) 55–76
15. Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In: AIPS’96,

AAAI Press (1996) 110–117
16. Smith, D.E., Weld, D.S.: Conformant Graphplan. In: AAAI’98, AAAI Press (1998) 889–896
17. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to

knowledge-state planning: Semantics and complexity. TOCL 5(2) (2004) 206–263
18. Son, T.C., Tu, P.H., Gelfond, M., Morales, A.R.: An approximation of action theories of and

its application to conformant planning. In: LPNMR’05. LNCS 3662, (2005) 172–184
19. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to

knowledge-state planning, II: the DLVK system. Artif. Intell. 144(1–2) (2003) 157–211
20. Balduccini, M.: A general method to solve complex problems by combining multiple answer

set programs. In: Proceedings ASPOCP’09. (2009)
21. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP’94, MIT Press (1994) 23–37
22. Oikarinen, E.: Modularity in Answer Set Programs. PhD thesis, Helsinki University of

Technology, Finland (2008)

