Genetic Algorithm for Rotating Workforce
Scheduling Problem

Michael Morz
Technische Universitit Wien
Karlsplatz 13, 1040 Wien, Austria
Email: moerz@Qdbai.tuwien.ac.at

Abstract—In this paper a genetic algorithm based method
for solving the rotating workforce scheduling problem is pre-
sented. Rotating workforce scheduling is a typical constraint
satisfaction problem which appears in a broad range of work-
places (e.g. industrial plants). Solving this problem is of a high
practical relevance. We propose a basic genetic algorithm for
solving this problem. One mutation operator and three meth-
ods for crossover are presented. Finally we give computational
results on benchmark examples from literature.

I. Introduction

Workforce scheduling, in general, includes sub-problems
which appear in many spheres of life like in industrial
plants, hospitals, public transport, airlines companies,
universities etc. According to the area, this problem is
denoted with different names in the literature. Usual used
terms are: workforce scheduling, manpower scheduling,
staff scheduling, employee timetabling, crew scheduling,
etc. Typically a workforce schedule represents the assign-
ments of the employees to the defined shifts for a period
of time. In Table I a typical representation of workforce
schedules is presented. This schedule describes explicitly
the working schedule of 9 employees during one week.
The first employee works from Monday until Friday in a
day shift (D) and during Saturday and Sunday has days-
off. The second employee has a day-off on Monday and
works in a day shift during the rest of the week. Further,
the last employee works from Monday until Wednesday
in night shifts (N), on Thursday and Friday has days-off,
and on Saturday and Sunday works in the day shift. So
each row of this table represents the weekly schedule of
one employee.

There are two main variants of workforce schedules:
rotating (or cyclic) workforce schedules and non-cyclic
workforce schedules. In a rotating workforce schedule all
employees have the same basic schedule but start with dif-
ferent offsets. Therefore, while the individual preferences
of the employees cannot be taken into account, the aim is
to find a schedule that is optimal for all employees. In non-
cyclic workforce schedules the individual preferences of the
employees can be taken into consideration and the aim
is to achieve schedules that fulfill the preferences of most
employees. In both variations of workforce schedules other
constraints such as the minimum number of employees

Nysret Musliu
Technische Universitidt Wien
Karlsplatz 13, 1040 Wien, Austria
Email: musliu@dbai.tuwien.ac.at

TABLE I
One typical week schedule for 9 employees

|| Employee/day | Mon | Tue | Wed | Thu | Fri | Sat | Sun ||

1 D D D D D - -
2 - D D D D D D
3 D - - N N N N
4 - - - - A A A
5 A A A A - - -
6 N N N N N - -
7 - A A A A A
8 A A - - - N N
9 N N N - - D D

required for each shift have to be met. In this paper we
will consider the problem of rotating workforce scheduling.
This problem is NP-complete.

Workforce schedules have an impact on the health and
satisfaction of employees as well as on their performance at
work. Therefore, computerized workforce scheduling has
interested researchers for over 30 years. For solving the
problem of workforce scheduling, different approaches were
used in the literature. A survey of algorithms used for
different workforce scheduling problems is given by Tien
and Kamiyama [13]. Examples for the use of exhaustive
enumeration for generation of rotating workforce schedules
are [4] and [2]. Balakrishnan and Wong [1] solved a
problem of rotating workforce scheduling by modeling it
as a network flow problem. Several other algorithms for
rotating workforce schedules have been proposed in the
literature [6], [7], [10]. Musliu et al [12] proposed and
implemented a new method for the generation of rotating
workforce schedules, which is based on prunning of search
space, by involving the decision maker during the genera-
tion of part solutions. The algorithm has been included in
a commercial product called First Class Scheduler, which
is already being used by several companies in Europe since
2000. Although this product has been shown to work well
in practice for solving of most real problems, for very
large instances of problems solution cannot always be

guaranteed because of the large size of the search space.
Recently, Musliu [11] proposed a tabu search approach
for solving the rotating workforce scheduling problem,
but this method is not yet well studied in very large
instances of problems. The critical features of workforce
scheduling algorithms are their computational behavior
and flexibility for solving a wide range of problems that
appear in practice. Recently Laporte [8] assessed rotating
workforce scheduling algorithms proposed in the literature
saying that “[...] these are often too constraining and not
sufficiently flexible for this type of problem”.

In this paper, we investigate the use of genetic algo-
rithms (GA) for solving the rotating workforce scheduling
problem. Although the GA were used to solve similar
problems with rotating workforce scheduling (e.g. nurse
scheduling), to our best knowledge the genetic algorithms
was not used to solve directly the problem we consider in
this paper. The rotating workforce scheduling involves typ-
ically different constraints compared to nurse scheduling,
and what also makes the rotating workforce scheduling
different from nurse scheduling is that it is cyclic (see the
problem definition in next section).

We proceed in this paper as follows: In the next section
we give a precise definition of the problem for which
the genetic algorithm is applied. In Section 2 the genetic
algorithm used for solving this problem is described. In
Section 3 the computational results are given and finally
in the last section concluding remarks are presented.

A. Rotating workforce scheduling

In this section, we describe the problem of assigning
shifts and days-off to employees in case of rotating
workforce schedules. This is a specific problem of a
general workforce-scheduling problem. The definition is
given below ([12]):

Instance:

e Number of employees: n.

o Set A of m shifts (activities) : a1, as,...,an, where
an, represents the special day-off “shift”.

o w: length of schedule. The total length of a planning
period is n x w because of the cyclic characteristics
of the schedules.

o A cyclic schedule is represented by an n x w matrix
S € A™. Each element s; ; of matrix S corresponds
to one shift. Element s; ; shows which shift employee
1 works during day j or whether the employee has
time off. In a cyclic schedule, the schedule for one
employee consists of a sequence of all rows of the
matrix S. The last element of a row is adjacent to
the first element of the next row, and the last element
of the matrix is adjacent to its first element.

e Temporal requirements: (m —1) X w matrix R, where
each element r;; of matrix R shows the required
number of employees for shift ¢ during day j.

o Constraints:

— Sequences of shifts permitted to be assigned
to employees (the complement of inadmissible
sequencesgz Shift change m x m x m matrix
C € A" If element c¢;), of matrix C is 1,
the sequence of shifts (a;,a;,ar) is permitted,
otherwise it is not.

— Maximum and minimum length of periods of
consecutive shifts: Vectors MAXS,,, MINS,,,
where each element shows the maximum respec-
tively minimum permitted length of periods of
consecutive shifts.

— Maximum and minimum length of blocks of
workdays: MAXW, MINW.

Problem: Find a cyclic schedule (assignment of shifts to
employees) that satisfies the requirement matrix, and all
other constraints.

Note that in [12], finding as many non-isomorphic
cyclic schedules as possible that satisfy all constraints,
and are optimal in terms of weekends without scheduled
work shifts (weekends off), is required. But in this paper
we consider the generation of only one schedule, which
satisfies all constraints. Furthermore, we do not consider
the optimization of weekends off.

IT. A Genetic Algorithm for the rotating workforce
scheduling problem

Genetic algorithm ([5], [3]) is a powerful modern heuris-
tic technique, which has been used successfully for many
practical problems. The basic idea of this technique is to
use the natural selection of the fittest population members
for advancing to a better set of solutions.

Further, we present the main characteristics of a genetic
algorithm, which is applied for solving the rotating work-
force scheduling problem. We describe how the individuals
are represented, the generation of initial population, mu-
tation and crossover operators and the selection process
during each iteration.

A. Representation of Individuals

Each population member stores one cyclic schedule that
is represented by an n X w matrix S where each element
si,; of matrix S corresponds to one shift or day off (for
exact definition see section I-A).

B. Generation of Initial Population

The cyclic schedule of each individual is filled on a
day (column) per day basis. For every day a vector v
is generated with v € ANumberofemployees that is filled
randomly with shifts until the requirements for each shift
for the specific day are fulfilled. This kind of initialization
always fulfills the workforce requirements. Actually as we
will see later, we also define the crossover and mutation
operators not to derange the workforce requirements, when
they are applied. This design assures, that the constraint
about the workforce requirements is fulfilled during each
iterations, what makes the problem easier to solve.

Considering the number of individuals in the popula-
tion, we relate this parameter with the size of the problem.
In our current implementation of algorithm we choose the
number of individuals in a population to be twice the
number of employees.

C. Fitness Function

During the generation of a new population (next gener-
ation), the evaluation of solutions (population members)
is most time consuming, because each solution has to
be checked for many constraints. For each violation of
a constraint a determined number of points (penalty)
is given, based on the constraint and the degree of the
constraint violation. The fitness of a population member
is calculated as the sum of those points for the population
member. So the fitness represents the sum of all penalties
caused by the violation of constraints. As the problem,
we want to solve, has only hard constraints, the solution
will be found when the fitness of the solution reaches the
value 0. The fitness is calculated as follows [11]:

NW
Fitness = Z P1 x Distance(WB;, WorkBRange) +
i=1
ND
Z P2 x Distance(DOB;, DayOffBRange) +
i=1
NumOfShifts NS;
Z (Z P3 x Distance(SB;, ShiftSeqRange;)) +
j=1 i=1

P4 x NumOfNotAllowedShiftSeq

NW, ND, represent respectively, the number of work
blocks, and days off blocks, whereas NS;, represents
number of shift sequences blocks of shift j. WB;, DOB;,
represent respectively, a work block i, and days-off block
i. SB;j, represents the i-th shifts block of shift j.
The penalties of the violation of constraints are set as
follow: P3 = P1 = P2 = P4 = 1. The function
Distance(X Block,range) returns 0 if the length of the
block X Block is inside the range of two numbers (range),
otherwise returns the distance of length of X Block from
the range. For example if the legal range of work blocks
is 4 — 7 and length of work block X Block is 3 or 8 then
this function will return value 1.

D. Mutation

The mutation operator is a simple move, which swaps
the contents of two elements in the m X w matrix S of
an individual. The swapping of elements is done only
inside of a particular column to be sure that the workforce
requirements are always fulfilled. The column in which the
swap is done, is selected randomly and the elements to
swap are also chosen randomly.

Because our experiments have shown that the mutation
operator is very powerful, the probability of mutation is
set to be very high (0.8).

The pseudo code for the the mutation operator is
presented below.

For FirstChild to LastChild

if randompercentage < mutationprobability then
column = randomday € [1, ..., NumberO fColumns];
employeel = randomemployee € [1, ..., Employees];
employee2 = randomemployee € [1, ..., Employees];
swapshi ft (column, employeel , employee2);

endif

Next

E. Crossover

We have experimented with three different types of
crossover operators. All of them take two individuals as
an input. The crossover probability is set to be 0.5. The
individuals which will take part in crossover are chosen
randomly from the set of parents (population).

Types of crossover:

Random crossover

1) Choose a random number z (z € [1,...,w])
2) Select x times a random column
3) Swap the chosen columns between the individuals

Block crossover

1) Choose a column z (z € [1,...,w]) randomly

2) Choose a length y € [1,...,w —z] for a block of
columns

3) Swap the selected block of columns between the
individuals

Separate columns crossover

1) Choose a random number z (z € [1,...,3])

2) Select z times a random column that is a not a
neighbor column of an already chosen one

3) Swap the selected columns between the population
members

F. Selection

To acknowlegde the fittness and their survival, all
children are evaluated regarding the errors that are present
in their schedule. Then they are subdivided into classes
by their fittness. That results in p classes where p can be
any number between 1 and the number of children.

Class z, where z € 1,...,p, has the probability of * to
get choosen. When a class has been choosen the first child
of that class is copied into the new population and the
child gets removed from the class. If the class is empty
then, it will get removed from the class subdivision.

ITII. Computational results

In this section we report on computational results
obtained with the current version of genetic algorithm
we have implemented. We give the results for the three
benchmark problems from the literature. Our first aim in
this paper was to see if the genetic algorithm can find

at all solutions for real-world rotating workforce schedul-
ing problems. Another aim was to compare the genetic
algorithm with the existing algorithms. For comparison
we take in considering the number of evaluations needed
to find the solution. We compare our results with those
reported with tabu search in [11], and give some remarks
considering the performance of genetic algorithm compare
to First Class Scheduler [12]. Direct comparison with First
Class Scheduler can not be done, because the FCS is based
on the interaction with the decision maker.

For each problem 10 independent runs were executed.
Number of iterations is limited to 500000 for each run.

Problem 1: The first problem from literature for which
we discuss computational results is a problem solved
by Butler [2] for the Edmonton police department in
Alberta, Canada. Properties of this problem are:
Number of employees: 9
Shifts: 1 (Day), 2 (Evening), 3 (Night)

Temporal requirements:

2 2 2 2 2 2 2
2 2 2 3 3 3 2
2 2 2 2 2 2 2

R3q =

Constraints: Length of work periods should be between
4 and 7 days; Only shift 1 can precede the rest period
preceding a shift 3 work period; Before and after weekends
off, only shift 3 or shift 2 work periods are allowed; At
least two consecutive days must be assigned to the same
shift; No more than two 7-day work periods are allowed
and these work periods should not be consecutive

Before we give our computational results some observa-
tions should be made. First constraint two and three can-
not be represented in our problem definition. Let us note
here that in all three examples given, we cannot model
the problem exactly (the same was true for Balakrishnan
and Wong’s [1] approach to the original problems), which
is to a high degree due to the different legal requirements
found in the U.S./Canadian versus those found in the
European context, but we tried to mimic the constraints as
closely as possible or to replace them by similar constraints
that appeared more meaningful in the European context.
Having said this, let us proceed as follows: The other
constraints can be applied in our model and are left like in
the original problem. As mentioned, we include additional
constraints about maximum length of successive shifts
and minimum and maximum length of days-off blocks.
In summary, additional constraint used for our algorithm
are:

o Not allowed shift changes: (N D), (N A), (A D)

o Length of days-off periods should be between 2 and

4

o Vector MAXS3 = (7,6,4)

The genetic algorithm could find a solution for this
problem in all 10 runs. GA needed in average 4850
iterations (485070 evaluations) to find the solution. The

solution for this problem found by genetic algorithm in
the first run is presented in Table II.

The solver based on tabu search [11] finds the solution
in only 25 iterations (5250 evaluations).

TABLE II

Genetic algorithm solution for the problem 1

Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun
1 D D A A N N -
2 - D D A A A -
3 - - D D A A A
4 - - - A A N N
5 N - - D D D D
6 A A - - D D D
7 D N N N - N
8 N N N - - A A
9 A A A N N - -

Problem 2 (Laporte et al. [9]): There exist three non
overlapping shifts D, A, and N, 9 employees, and require-
ments are 2 employees in each shift and every day. A
week schedule has to be constructed that fulfills these
constraints: (1) Rest periods should be at least two days-
off, (2) Work periods must be between 2 and 7 days
long if work is done in shift D or A and between 4
and 7 if work is done in shift N, (3)Shift changes can
occur only after a day-off, (4)Schedules should contain as
many weekends as possible, (5)Weekends off should be
distributed throughout the schedule as evenly as possible,
(6) Long (short periods) should be followed by long (short)
rest periods, (7)Work periods of 7 days are preferred in
shift N.

Let as note that we cannot model the problem given
in this section exactly in our solver. Here we also mimic
the constraints as closely as possible or replace them by
similar constraints which can be taken in consideration
in our genetic algorithm. In our case constraint 1 is
straightforward. Constraint 2 can be approximated if we
take the minimum of work blocks to be 4. Constraint
3 can also be modeled if we take the minimum length of
successive shifts to be 4. For maximum length of successive
shifts we take 7 for each shift. Other constraints can not
be modeled in our solver.

The genetic algorithm could find a solution for this
problem in all 10 runs. GA needed in average 5318
iterations (531840 evaluations) to find the solution. One
solution for this problem found by genetic algorithm is
presented in Table III.

The solver based on tabu search [11] finds the solution
in 585 iterations (122850 evaluations).

Problem 3: This problem is a larger problem first
reported in [4]. Characteristics of this problem are:
Number of employees is 17 (length of planning period is
17 weeks).

TABLE III
Genetic algorithm solution for the problem 2

TABLE IV
Genetic algorithm solution for the problem 3

Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun
1 - - - N N N N 1 D D A A A -
2 - - D D D D D 2 - - D D D A A
3 D D - - A A A 3 N N - - - D D
4 A A A A - - N 4 D D D - - - A
5 N N N - - - 5 A A A N N - -
6 D D D D D | D D 6 D D A A N | N N
7 - - - A A A A 7 - - - A A N N
8 A A A - - - - 8 N - A A N
9 N N N N N N - 9 N - - A A A
10 A N N - - D D
11 D D D D - - -
. . 12 A A N N N - -
%hree nolnoverllappmg Shlft?. I X X A X N~ TN -
emporal requirements are: v - : 5 5 5 N N
5 4 4 4 4 4 3 15 N - - D D | D A
Ryn=154 4 4 4 4 4 16 A A - - D| D| D
4 3 3 3 4 4 4 17 D N N N - - -
Constraints: Rest-period lengths must be between 2
and 7 days; Work-periods lengths must be between 3 TABLE V

and 8 days; A shift cannot be assigned to more than 4
consecutive weeks in a row; Shift changes are allowed only
after a rest period that includes a Sunday or a Monday
or both; The only allowable shift changes are 1 to 3, 2 to
1, and 3 to 2.

We cannot model constraints 3, 4, and 5 in their original
form. We allow changes in the same block and for these
reason we have other shift change constraints. In our case
the following shift changes are not allowed: 2 to 1, 3 to 1,
and 3 to 2. Additionally, we limit the rest period length
from 2 to 4 and work periods length from 4 to 7. Maximum
and minimum length of blocks of successive shifts are given
with vectors MAX Ss = (7,6,5) and MINS3 = (2,2,2).

The genetic algorithm could find a solution for this
problem in all 10 runs. GA needed in average 17383
iterations (3302941 evaluations) to find the solution. The
solution for this problem found by genetic algorithm in
the first run is presented in Table IV.

The solver based on tabu search [11] finds the solution
1179 iterations (880713 evaluations).

In the Table V a summary of results for our implemen-
tation of genetic algorithm in three benchmark problems is
given. For each problem the average number of iterations
and evaluations out of 10 runs is presented.

IV. Conclusion

Our current implementation of genetic algorithm gives
promising results for the problem of rotating workforce
scheduling. Computational results show that the genetic
algorithm can successfully generate solutions for typical
real life problems from practice. Compared to tabu search
approach [11] the current version of algorithms needs more

Genetic algorithm results for 10 runs

|| Example Iterations | Evaluations ||
Butler Problem 4850 485070
Laporte Problem 5318 531840
Heller Problem 17383 3302941

evaluations of candidate solutions to reach the solutions.
First Class Scheduler [12] still outperforms in most real
life problems tabu search approach and also the approach
we presented in this paper. However the current version
of genetic algorithm can still be improved. In particularly
a comprehensive study of the impacts of different GA
parameters is needed and the adaptive change of these
parameters during the iterations would be a possible
extension of our algorithm.

Acknowledgment

This work was supported by FWF (Austrian Science
Fund) Project No. Z29-N04.

References

[1] Nagraj Balakrishnan and Richard T. Wong. A network model
for the rotating workforce scheduling problem. Networks, 20:25-
42, 1990.

[2] B. Butler. Computerized manpower scheduling. Master’s thesis,
University of Alberta, Canada, 1978.

[3] D. E. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, 1989.

[4] N.Heller,J. McEwen, and W. Stenzel. Computerized scheduling
of police manpower. St. Louis Police Department, St. Louis,
MO, 1973.

(5]

J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

R. Hung. A multiple-shift workforce scheduling model under
4-day workweek with weekday and weekend labour demands. J
Opl Res Soc, (45):1088-1092, 1994.

P. Knauth. Designing better shift systems. Appl Ergonom,
(27):39-44, 1996.

G. Laporte. The art and science of designing rotating schedules.
Journal of the Operational Research Society, 50:1011-1017,
1999.

G. Laporte, Y. Nobert, and J. Biron. Rotating schedules. Eur.
J. Ops. Res., 4:24-30, 1980.

Hoong Chuin Lau. Combinatorial aproaches for hard problems
in manpower scheduling. Journal of Operations Research
Society of Japan, 39(1):88-98, 1996.

Nysret Musliu. Applying tabu search to the rotating workforce
scheduling problem. In The 5th Metaheuristics International
Conference (MIC’03), Kyoto, Japan, 2003.

Nysret Musliu, Johannes Géartner, and Wolfgang Slany. Efficient
generation of rotating workforce schedules. Discrete Applied
Mathematics, 118(1-2):85-98, 2002.

James M. Tien and Angelica Kamiyama. On manpower
scheduling algorithms. SIAM Review, 24(3):275-287, 1982.

