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ABSTRACT
Minimality is an important optimization criterion for solutions of
data exchange problems, well captured by the notion of the core.
Though tractability of core computation has been proved, it has
not yet become a part of any industrial-strength system, still being
highly computationally expensive. In this demonstration, we show
how core computation can be used in a data exchange modeling
tool, allowing data engineers to design more robust data transfer
scenarios and better understand the sources of redundancy in the
target database.

1. INTRODUCTION
Data exchange is concerned with the transfer of data between

databases with different schemas, governed by source-to-target de-
pendencies and target dependencies. The source and target schemas
together with the sets of dependencies constitute the schema map-
ping. The data exchange problem associated with a schema map-
ping (S,T,Σst,Σt) is the task of constructing, given a source in-
stance I , a target instance J whose attribute values are those of I
plus some newly invented labeled nulls, such that all of the source-
to-target dependencies Σst and target dependencies Σt are satis-
fied. Such a J is called a solution to the data exchange problem.
Following [3], we confine ourselves to dependencies of the form
φ(~x ) → ∃~y ψ(~x, ~y ) where the free variables ~x are understood
to be universally quantified. Moreover, the antecedent φ is a con-
junction of atoms and the conclusion ψ is either a conjunction of
atoms or a conjunction of equalities. In the former case, we speak
of a tuple generating dependency (TGD) while the latter case is re-
ferred to as an equality generating dependency (EGD). Typically,
the number of possible solutions to a data exchange problem is in-
finite. A natural requirement (proposed in [3]) on the solutions is
universality, that is, there should be a homomorphism from the ma-
terialized solution to any other possible solution.

∗This work was supported by the Vienna Science and Technology
Fund (WWTF), project ICT08-032. V. Savenkov additionally re-
ceives a scholarship from the European program “Erasmus Mundus
External Cooperation Window”.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

EXAMPLE 1. Let the source instance consist of two relations
BasicUnit(course, lecturer, tutor): {(java, john, john)} and
AdvancedUnit(course): {java}, i.e., John gives both the lecture
and the tutorial on Java programming, and there are advanced
chapters in the Java course. Let the target schema comprise four
relation symbols Faculty(idf, name), NeedsLab(id faculty, lab),
Course(idc, course) and Teaches(id faculty, id course), and con-
sider the source-to-target TGDs (1, 2) and the target foreign key:

1. AdvancedUnit(C) → ∃Idc, Idf,N Course(Idc,C),
Faculty(Idf,N),Teaches(Idf, Idc).

2. BasicUnit(C, L,T) → ∃Idc, Idt, Idl Course(Idc,C),
Faculty(Idl, L),Teaches(Idl, Idc),
Faculty(Idt,T),Teaches(Idt, Idc).

3. Teaches(Idf, Idc) → ∃L NeedsLab(Idf, L).

Then the following instances are all valid solutions:

J = { Course(C1, java),Course(C2, java),
Faculty(F1,N1),Faculty(F2, john),Faculty(F3, john),
Teaches(F1,C1),Teaches(F2,C2),Teaches(F3,C2),
NeedsLab(F1, L1),NeedsLab(F2, L2),NeedsLab(F3, L3)}.

Jc = {Course(C1, java),Faculty(F1, john),Teaches(F1,C1),
NeedsLab(F1, L1)}.

J ′ = {Course(java, java),Faculty(F1, john),
Teaches(F1, java),NeedsLab(F1, L1)}.

Note that J ′ in Example 1 is not universal. Indeed, a homomor-
phism has to map every constant onto itself [3]. Hence, there exists
no homomorphism h : J ′ → J , since the fact Course(java,java)
cannot be mapped onto any fact in J .

Universal solutions can be obtained with the well-known chase
procedure (cf. [3]), which is essentially an iterative “patching” of
the target database instance in order to satisfy all the dependencies,
for a given source database. In particular, an iteration (chase step)
enforcing a TGD adds missing atoms to the target instance, while
an EGD is enforced by unifying values in the target relations. More
formally, for a source database I and a target database J ,

• if there is a TGD φ(~x) → ∃~yψ(~x, ~y), s.t. φ(~a ) is satisfied
for some assignment ~a on ~x, and J 2 ∃~y ψ(~a, ~y ) then J
is extended with facts corresponding to ψ(~a, ~z ), where the
elements of ~z are fresh labeled nulls;

• if there exists an EGD φ(~x ) → xi = xj , s.t. J |= φ(~a ) for
some assignment ~a on ~x, but the corresponding values ai, aj

in ~a are not equal, then a null a′ among {ai, aj} is chosen
and every occurrence of a′ in J is replaced by the other term.
Moreover, in a case when both ai, aj are constants and ai 6=
aj , the chase halts with failure.



The result of chasing the source instance with the source-to-
target dependencies and further chasing the target instance with the
target dependencies is called the canonical universal solution. In
our example, J is such a solution, obtained by enforcing the depen-
dencies in the order they are listed:

1. TGD (1) adds the facts Course(C1, java), Faculty(F1,N1)
and Teaches(F1,C1).

2. By TGD (2), the facts Course(C2, java),Faculty(F2, john),
Faculty(F3, john),Teaches(F2,C2), and Teaches(F3,C2) are
added.

3. The three final chase steps add the NeedsLab facts.

Universal solutions are not unique: For instance, if we swap the
first two chase steps, then the first three facts would not need to
be created. Indeed, on our particular source database, enforcement
of the TGD (2) also satisfies the rule (1). In other words, J is not
minimal, i.e., it contains unnecessarily many tuples and, in particu-
lar, unnecessarily many nulls, which we shall refer to as redundant
in the sequel. Note however that J is universal. Hence, there is
a homomorphism mapping it onto another, smaller, solution. As
shown in [4], the smallest possible universal solution, called the
core, is always contained in every other universal solution, and
can be found by computing a proper endomorphism, mapping a
database instance onto a proper subset of it (in our example, Jc is
the core). Unlike universal solutions, cores are unique up to iso-
morphism [4], that is, renaming of labeled nulls. The typical data
exchange procedure, proposed in [4], is illustrated in Figure 1.

The complexity of core computation was investigated in several
papers ([4, 5, 6]). The most general polynomial time algorithm for
core computation is the one developed by Gottlob and Nash [6],
which has been further enhanced in [8], where also the first proto-
type implementation of core computation is reported. Recently, a
new promising approach of core computation through a specially
adapted chase has been reported [7]. However, such a core compu-
tation is only possible in absence of target constraints so far, while
our tool works with more expressive mappings, covering sets of
weakly acyclic target TGDs and EGDs.

As our experience with an implementation of the core computa-
tion suggests [8], the amount of redundancy introduced in the target
instance by the chase can differ enormously for a different design
of the mappings and target dependencies in the data exchange sce-
nario. Hence, especially for large databases, where the final min-
imization step is not feasible in reasonable time, it is essential to
keep the redundancy introduced by the chase as small as possi-
ble. To this end, we present the DEMo system for Data Exchange
Modelling that focuses on evaluating and debugging data exchange
scenarios with respect to redundancy in the generated target databa-
ses. It assists the data engineer in designing the mappings and target
dependencies and in the choice of a chase order. It also allows to
test the transfer on a sample of the source data and to check the
optimality of the obtained solution by computing its core.

The focus on the redundancy aspect of the data exchange is a
key difference of our tool from other systems for mapping analysis,
like, e.g., SPIDER [1] or MUSE [2]. To the best of our knowledge,
no other system addressing this issue has been reported so far.

Figure 1: Complete data exchange process.

2. CORE COMPUTATION
Core computation plays a central role in our tool, and it is, there-

fore, described in more detail here. Core computation essentially
comes down to eliminating as many nulls as possible from the tar-
get database. Those nulls (each being assigned a label) are intro-
duced during the chase by the application of TGDs with existen-
tially quantified variables. The core computation algorithms in [6]
and [8] take the target instance J resulting from the chase and suc-
cessively compute a series of nested subsets J = J0 ⊃ J1 ⊃ . . .
via endomorphisms hi : Ji → Ji with Ji+1 = hi(Ji). The core
is reached when no further proper (i.e., non-surjective) endomor-
phism exists. In order to search for these endomorphisms, we have
to check for all possible pairs (x, y) of domain elements in Ji with
x 6= y if there exists an endomorphism hi that maps x and y to the
same value. Clearly, such an hi is non-injective and, over a finite
domain, also non-surjective.

The search for such an endomorphism hi in polynomial time
requires care, bearing in mind that deciding if there exists a homo-
morphism between two graphs (or, more generally, between two
structures) is a classical NP-complete problem. Tractability in our
case is ensured by splitting the search for hi in two major sub-
steps: First, we have to search for a non-injective homomorphism
h′

i : J
′
i → Ji for a subset J ′

i of Ji with some structural property
ensuring that the search is feasible in polynomial time. Then, h′

i is
extended to a homomorphism hi : Ji → Ji. For details, see [6, 8].

The overall structure and the asymptotic worst-case behavior of
the algorithms in [6] and [8] are very similar. The principal dif-
ference between these two algorithms is how they deal with EGDs
in the target dependencies: The algorithm in [6] simulates EGDs
by means of an auxiliary, binary predicate E (where an equality
s = t is encoded by the atom E(s, t)) and by introducing TGDs
which ensure that E has the essential properties of equality (like
reflexivity, symmetry, transitivity, replacement property, etc.). The
target chase is done with the modified target dependencies and the
enforcement of the original EGDs happens in the course of the core
computation. In particular, the result of the target chase is, in gen-
eral, not a solution of the data exchange problem (since the EGDs
are not fulfilled), while the core is guaranteed to be a solution. In
contrast, in the approach of [8], the EGDs are applied directly as
part of the target chase. Hence, the result of the target chase indeed
is a solution to the data exchange problem.

Our DEMo tool is based on an implementation of the core com-
putation algorithm from [8], which has two major advantages:

1. The result J of the chase is indeed a solution to the data
exchange problem and so are all nested subinstances J =
J0 ⊃ J1 ⊃ J2 . . . which are constructed on the way to
the core. Hence, the core computation can stop at any time
with an approximation Ji of the core. Such approximations
are valid universal solutions, that are more compact than a
canonical one, but might still not be cores. However, due to
the use of heuristics for the core search, already the first ap-
proximation computed by the algorithm can be quite close to
the ultimate core (for instances with high redundancy, up to
90% of redundant nulls can be eliminated already in the first
approximation). This feature fits well into the modeling sce-
nario where the data engineer needs a first quick evaluation
of the dependency design. For most cases, core approxima-
tions allow to witness sub-optimality of the data exchange
process in time substantially shorter than needed to compute
the ultimate core. We return to this point when discussing
the demonstration scenario.

2. Even more importantly, in the core computation algorithm



of [8], the EGDs are applied directly rather than simulated
by TGDs. Hence, the redundancy introduced by the chase
is exclusively due to the data exchange scenario (plus the
chase order). In contrast, the redundancy introduced into the
target database by the algorithm of [6] may be due to the
additional TGDs which are needed to simulate the EGDs.
Hence, even if a lot of redundancy is introduced by the chase
and later eliminated by the core computation, the algorithm
of [6] would not allow us to draw any conclusions on the
quality of the dependency design.

3. OPTIMIZING THE DATA EXCHANGE
Consider the following target TGD:

S(x, y) → ∃v, w, z R(y, v) ∧ P (x,w) ∧ P (z, w).

If applied to a database {S(1, 2), R(2, v1)}, it will create the tu-
ples {R(2, v2), P (1, w), P (z, w)}. The tuple R(2, v2) is clearly
redundant, but the standard chase procedure does not allow to add
only part of the tuples specified by the right-hand side of the TGD.
It is not difficult to show that the above dependency is logically
equivalent to the conjunction of two other dependencies (the R-
atom does not share existentially-quantified variables with the P-
atoms): S(x, y) → ∃v R(y, v), and S(x, y) → ∃w, z P (x,w) ∧
P (z, w), allowing to avoid the unnecessary creation of R(2, v2).
We call such a splitting of TGDs normalization. More generally,
we can split any TGD τ according to the connected components of
the Gaifman graph of the right-hand side ψ(~x, ~y) of τ , considering
only the new variables ~y, i.e., this graph contains as vertices the
variables in ~y. Moreover, two variables yi and yj are adjacent if
they jointly occur in some atom of ψ(~x, ~y).

Next, also the tuple P (z, w) is not part of the core. We would
not have to introduce it, if the latter TGD were first minimized to
a smaller, yet logically equivalent one: S(x, y) → ∃w P (x,w).
Thus, the second optimization technique is based on conjunctive
query minimization. Actually, conjunctive query minimization is
NP-complete. However, in data exchange, only the data complex-
ity is normally considered while the data exchange scenario is taken
as fixed. Indeed, the tractability of data exchange [3] and of core
computation [6] only refers to the data complexity.

The next technique is concerned with coincidences in the source
data: in Example 1, both the BasicUnit table and AdvancedUnit
table mention the same course (Java). As already shown earlier,
mere changing the order of enforcement of TGDs (1) and (2) would
suppress the creation of redundant tuples in such situations. Infor-
mally, this rule can be formulated as ”more specific sets of tuples
should be added first”. Let us now look at the rule (2) alone. In
cases where the same person gives lectures and tutorials in some
course (like it happened with Java programming), this person is en-
tered twice in the Faculty table. This effect could be prevented
by the introduction of an additional, specialized version of (2):
BasicUnit(C, T, T)→ Course(Idc, C), Faculty(Idt, T), Teaches(Idt, Idc).
This rule, if placed earlier in the chase sequence than the original
one, would allow to avoid the creation of redundant tuples.

4. SYSTEM OVERVIEW
The the two main system components are the user interface,

which will be described in the next section, and the data exchange
engine, implementing the chase and core computation functional-
ity. The system is written in Java. Additionally, the data exchange
engine heavily relies on the connected DBMSs, to which the whole
data transfer and large parts of the core computation are delegated,

for instance, the search for an endomorphism is done by evaluating
automatically generated SQL queries.

The implementation is standards-based and extensible: any JDBC
data source can be used as a source instance, and either PostgreSQL
or Oracle are currently supported for the target database. Internally,
the data exchange scenarios are stored as XML files, and XSLT is
heavily used to automatically generate SQL queries. In order to
accommodate the system to any other DBMS product for the target
instance, we would simply have to modify the XSLT templates.

To store null labels, the system creates additional columns in the
target relations. However, the data engineer only needs to specify
the logical schema; all auxiliary columns and other database ob-
jects are generated automatically by the system. Many such objects
are used to facilitate the debugging of the data exchange scenario
and to allow for effective core computation. Particularly important
is the lineage information, tracking the chase process and explain-
ing the creation of any particular tuple in the database. Exploring
the lineage by means of the graphical user interface is shown in
Figure 2.

Figure 2: Lineage explorer.

Apart from generating additional information, also an automatic
cleanup of the target database is supported, thus facilitating the
gradual development of data exchange scenarios.

5. DEMONSTRATION SCENARIO
The DEMo system supports an interactive graphical user inter-

face. We will showcase the system by working on a sample data
exchange scenario, imitating the work session of a data engineer.
Scenarios are comprised of two schemas, mappings between them
(represented by a set of source-to-target dependencies), and target
dependencies. The focus of DEMo is the design of dependencies
and finding an appropriate chase order so as to arrive at a more
compact target database.

We start with showing how our tool assists the data engineer in
the dependency design: First, the user specifies the desired map-
pings and target dependencies and lets the system analyze them (to
save time at the demonstration, we will prepare some sample sce-
narios illustrating the main issues addressed by our tool). If prob-
lems are detected, the corresponding dependencies are highlighted
by the system, and fixes (e.g., dependency rewrites) are proposed.
Every detected problem is accompanied by a textual explanation.
For instance, for the TGD (2) from Example 1, a specialized ver-
sion will be proposed to handle the case when the lecture and the
tutorial are given by the same person, as explained above. We call



such a situation where the same value resides at different positions
in the database, leading to the introduction of redundant tuples (that
would otherwise not be redundant) a coincidence.

Clearly, it is important not to introduce specialized rules exces-
sively. With the help of our system, the data engineer can first check
if it makes sense to introduce such a rule: The system provides a
convenience means for querying the source data, to find out how
frequent a certain coincidence is and if the introduction of a new
specialized rule is justified. Each dependency change proposed by
the system can be either accepted or rejected by the user, see Fig-
ure 3.

The second step of the demonstration is concerned with the de-
sign of the chase sequence. Order constraints will be assigned to
some groups of dependencies (e.g., more specific rules should go
prior to more general rules). Each order constraint will have an an-
notation explaining its meaning. A default order satisfying all the
constraints will be proposed, but the user can rearrange the depen-
dencies manually, or delete any order constraint.

At the next step, the data transfer is performed, i.e., the chase
procedure is executed. For each source table, it is possible to as-
sign a condition limiting the number of transferred rows, which is
useful for big source databases, where only a small sample database
should be involved in the modeling. If EGDs are part of the target
constraints, the chase may fail: this means that an attempt to unify
different constants was made. In this situation, the offending tuple
combination will be shown to the dependency designer. If the chase
succeeds, then the solution can be explored in the database viewer.
For convenience, the null labels and the usual ”constant” values are
represented in one column, nulls being marked with color. Along
with the visual exploration, users can see the summary, showing the
chase statistics, number of applications and timing for each rule,
and the list of columns where most of the nulls are stored. For each
null, it is possible to see all its occurrences (as a list of tuple ref-
erences), and its lineage, i.e. the sequence of rules that led to its
creation, and the tuples participating in the process, see Figure 2.

The last phase of the session is the redundancy analysis. It con-
sists of sampling the variables at random positions in the database
and attempting to eliminate them, exactly as in the core compu-
tation algorithm. Redundancy is then estimated as the number of
variables that could be eliminated (mapped out with a proper en-
domorphism) related to the total number of variables tried. Be-
sides the estimation, the precise redundancy measurement happens
when the core is actually computed. Figure 2 shows redundant rows
marked with grey color.

As described earlier, the core is computed iteratively as a se-
quence of nested endomorphisms. In order to keep track of the
progress of the computation, the system produces output as in Table
1, showing the number of tuples and remaining nulls after each iter-

Figure 3: Dependency rewriting.

Table 1: Output by a core computation step

#tuples #nulls shrink timing (sec.)
univ. sol. 811 566 – 21
1 endo. 406 282 51% 63
2 endo. 398 274 3% 43
3 endo. 390 260 5% 39
4 endo. 382 258 1% 35

. . . . . . . . . . . . . . .
core 358 252 1% 25 (286 total)

ation, the eliminated redundancy (as percentage of nulls that were
mapped out), and the timing in seconds. This output is very useful,
since a big difference between the sizes of the universal solution
and the core (like the one shown in Table 1, where more than half
of the nulls are redundant) suggests, that there is some design flaw:
e.g., some non-minimized constraint systematically introduces new
nulls, or some frequent coincidence in the source data has not been
treated by a specialized TGD, or the data engineer has “forgotten”
to specify an EGD which in fact holds for the target instance, etc.

After each phase, the statistics (number of nulls, redundancy,
timings etc.) can be saved for future reference. After adjusting
the dependencies or the chase order, the data transfer can be re-
peated — the tool supports automatic creation and dropping of the
target schema, thus facilitating iterative development and ease of
experimentation with different scenarios.

6. CONCLUSION
Core computation in the presence of target constraints is so far

only available as a method for eliminating redundancy a posteri-
ori from the target database in data exchange [4]. In this paper,
we have presented our DEMo system, whose purpose is to assist
the data engineer in designing expressive schema mappings that in-
clude target constraints, and to optimize the chase process, in order
to reduce the redundancy in the target database. At the heart of this
tool is a core computation implementation which, if applied to a
small sample database, can give valuable insights on how superflu-
ous tuples are introduced by a given data exchange scenario.
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