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Abstract—The availability of scarce resources in a service-
oriented system demands for context-aware selection policies
that adapt based on service-level agreements (SLAs). One of
the open issues is to prioritize service requests in dynami-
cally changing environments where concurrent instances of
processes may compete for resources. Here we propose a
runtime monitoring approach to observe the actual state of the
system. We argue that priorities should be assigned to requests
based on potential violations of SLA objectives. While most
existing work in the area of quality of service monitoring and
SLA modeling focuses typically on purely technical systems,
we consider service-oriented systems spanning both software-
based services and human actors. Adaptive request scheduling
in such systems is challenging due to the poorly predictable
behavior of human actors in performing tasks. Our approach
helps to cope with these challenges by prioritizing service
requests that may cause violations of SLAs and corresponding
objectives that are associated with processes.

Keywords-service-oriented systems, monitoring, adaptation,
service-level agreements, scheduling, human factors

I. I NTRODUCTION

Service-oriented systems have become an important ap-
proach and technological framework to solve problems
in distributed computing environments. Challenges in dis-
tributed service-oriented systems include the discovery of
resources and monitoring of the system’s runtime behavior.
Capturing the current state of the system is essential in
dynamic environments where services are discovered and
invoked at runtime. Research in the area of quality of service
(QoS) modeling and monitoring (e.g., see [1]) has provided
an important building block to observe the runtime state of
a service-oriented system. Service-level agreements (SLAs)
let service providers specify quality criteria demanded by
consumers [2]. Keeping services compliant to SLAs is
crucial in a service-oriented system. Usually, if the system is
designed properly and acts as expected (e.g., response time
and service availability), the SLA is satisfied. However, both
internal and external factors can compromise the overall per-
formance of the system. While the strategic actions should
be taken to prevent the system from entering undesirable
conditions (e.g., through replicating the components, adding
resources), the run-time adaptation can also be performed
in attempt to minimize the penalties in given situations. In
this work, we assume that multiple processes need to access

shared resources in a singleton manner. Assume a process
consisting of multiple activities, some of them enacted by in-
voking software services and certain activities performedby
human actors. In a service-oriented system, such a scenario
could be realized by modeling and enacting compositions
using the Business Process Execution Language (BPEL) [3],
where human steps are modeled using BPEL4People and
WS-HumanTask [4], [5]. Service provided by human actors
can be regarded as ‘low throughput’ services because hu-
mans naturally work at lower speeds than software-based
services. If human-based low throughput services are part
of a process, the order in which processes get the response
from such services impacts the process execution times. If
the system gets overloaded or some processes are late due
to unexpected delays, the SLAs might be violated. However,
the control over the ordering of service requests can reduce
the penalties or prevent the violations at all.

To address these challenges, we propose a dynamic adap-
tation approach and heuristic prioritizing algorithm thatana-
lyzes the current state of the service-oriented system at run-
time and prioritizes service requests according to assigned
process SLAs. We assume that the execution state of all
the processes in a service-oriented system is accessible, and
that the penalty functions of SLAs are provided. The main
idea behind the algorithm is that the priority of a service
execution is given to those processes that are expected to
produce the highest penalties if this service is delayed for
them. To illustrate our approach, we discuss insurance claim
processes. The contributions of the paper are as follows:

• We present the conceptual approach for service request
prioritization in orchestration engines.

• We design a priority assignment algorithm to cope with
the challenges in dynamic SOA.

• We present a detailed evaluation of our approach to
demonstrate its effectiveness and efficiency.

The paper is organized as follows: Section II overviews
related work with the focus on adaptation techniques in
service-oriented systems. In section III we present a mo-
tivating scenario and in section IV the adaptation model.
Experiments are shown in section V. The paper is concluded
in section VI.
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Figure 1. Claim processes for different insurance cases.

II. RELATED WORK

Our approach is aiming at minimizing SLA penalties via
prioritizing the requests and assigning the available ser-
vice throughput. Such an objective constitutes a scheduling
problem. Among the variants of this problem, the resource-
constrained multi-project scheduling problem (RCMPSP) [6]
is the most conformable to ours. However, those studies do
not address the service-oriented architecture, and, thereby,
related concepts such as SLA or QoS.

A priority scheduling method for process engines is pro-
posed in [7]. It analyzes the execution status in the process
engine and dynamically assigns the priorities to service
requests alike to our approach. Instead of penalty functions,
it considers utility functions. However, this work assumes
that services support prioritized execution of requests with
either High or Low priority. Such an assumption has two
strong disadvantages: firstly, it severely reduces the scope of
application, as services do not support prioritized execution
in general, and, secondly, even if a service distinguishes
between requests with high and low priorities, it would
still not be able to distinguish between requests with the
same priority which is crucial in case of multiple concurrent
requests and low service throughput. Unlike it, our approach
uses essentially different prioritization algorithm and request
scheduling (via proxy schedulers), so it does not have these
disadvantages.

SLA violation and prevention in service compositions
through adaptation is addressed by various researchers. For
example, [8] proposes a general adaptation framework for
monitoring and preventing SLA violations by performing
various actions upon the service composition, like changing
the service bindings or composition structure. In contrastto
it, our approach does not address the composition changes,
but request prioritization among different compositions.

Various escalation mechanisms to avoid breaking the
workflow deadlines are discussed in [9]. The prioritization
of tasks or cases which is highly related by implication,
is briefly discussed. However, the paper does not consider
SLAs and penalties, and no rationale regarding the actual
implementation of the method is given.

Trade-offs between costs and profits of various service
composition adaptations are discussed in [10]. The adapta-
tion proposed by us does not imply any costs besides the

performance overhead used for the analysis.
The approaches like [11], [12] use dynamic binding to

improve the QoS of process instances, whereas our approach
does not assume the existence of several service endpoints.

III. SCENARIO

To illustrate our approach, we discuss a motivating sce-
nario where processes are designed and executed in the
context of insurance claim handling. We look at different
kinds of insurance processes: the first one dealing with a
comprehensiveinsurance plan and the second withliability
coverage. Both cases are depicted in Fig. 1.

The comprehensive plan ensures that damage (for example
accidents or vandalism) is being paid by the insurance
company. In certain European countries, liability is the
minimum insurance coverage everyone must have due to
government regulations. As an example, if A is responsible
for the damage of B, then A’s insurance company must
pay for B’s damage. Fig. 1(a) shows the process for the
comprehensive insurance plan. People obtaining coverage
through this plan may be regular or premium customers.
For premium customers, the insurance company wants to
provide better quality of service as for regular customers.
For example, faster processing of the insurance claim. The
process is initiated as soon as the customer issues an
insurance claim. The registration of the claim is performed
automatically by a software service. In the next step the
process splits into two parallel branches. Based on the issued
claim, a software service is invoked (stepEstimate Cost) to
perform an automatic calculation of the expected costs. A
person from the insurance company analyzes the received
claim and typically requests further information from the
customer. After both branches have finished, a decision is
made by a supervisor. The outcome may be to reimburse
the customer or not. In the first case, an expert reviews the
case by visiting the customer to obtain precise understanding
of the damage upon which actual calculations are made.
The alternate case terminates by sending a (auto-)generated
notification to the customer.

The second process example is shown in Fig. 1(b). In con-
trast to the comprehensive insurance example in Fig. 1(a),
we assume in this scenario that the person filing the claim
is not a customer of the insurance company. The process
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Figure 2. The overall architecture of the approach.

is therefore simpler because the person filing the insurance
claim only receives limited support (e.g., help desk) and
also limited service-level guarantees are given. The process
is initiated in the same manner as in the comprehensive
insurance plan example. Afterwards, a decision is made
based on received information. The next steps are again
equivalent to the steps (Perform Expertiseand notification)
of the first process.

What these processes have in common is that they access
shared resources. For example, by invoking a service in the
step Perform Expertise. If a process invokes this service,
other processes (instances) may need to wait until free
resource capacities are available. However, this could cause
violations in SLA objectives. Thus, careful scheduling of
requests is needed to satisfy customer needs.

IV. A DAPTATION MODEL

In this section we describe the conceptual architecture of
our solution, the prioritization algorithm, and the remarks
regarding the deployment of such a solution in a real SOA.
We assume that all services in the system are atomic (not
composite), as we can decompose all such services.

A. Conceptual Architecture

The architecture of the approach is depicted by Fig. 2.
Normally, when a process invokes a service, a request
message is sent to the service endpoint, so the order in which
requests are processed by a service is determined by this

service’s implementation which is unaware of processes run-
ning, SLAs, or other context information. In our approach,
a scheduler proxy is created and assigned to each service
whose request priorities are being adapted. The scheduler
proxy intercepts requests to the service and reorders them
according to prior defined priorities. The scheduler is aware
of the service’s QoS (through the monitoring module), so
it dispatches requests towards the service depending on the
available free capacities. It ensures that the priorities are
obeyed. The priorities are periodically set by an adaptation
loop created for the service. As the re-ordering is performed
before the requests are sent to a service, the actual location
of the service does not play a role.

The adaptation loop consists of three phases:

1) Collection of context and monitoring information.The
structure, the current execution state, and penalty func-
tions (from SLAs) of all currently running processes
as well as the QoS information are collected from the
orchestration engine and from the monitoring mod-
ule respectively. We use a deterministic QoS model,
so the throughput and response time are considered
single values. There exist various approaches for QoS
monitoring (e.g., [1], [13]) which is out of the paper’s
focus.

2) Calculation of request priorities.The collected data is
passed to the algorithm (described in Listing 1) which
calculates priorities for forthcoming and recently made



Input : ServiceS, its response timeSRT , set of processesP , for each processp penalty functionLp(t)
Output : Ranked requests

1 for processp in P do
2 Rp = pending requests ofS in p

3 Re = requests ofS predicted to be made duringSRT /2 period inp
4 R = Rp ∪Re

5 Assume that replies of all requests inR are received afterSRT , predict timet of finish for processp
6 l0 = Lp(t) // Default penalty

7 for requestr in R do
8 Assume that a reply ofr is received afterSRT ∗ 2 and replies of all other requests inR are received after

SRT , predict timetr of finish for p
9 lr = Lp(tr) // Penalty for current request

10 dr = lr − l0 // Difference between default penalty and the penalty for current request

11 Add the tuple ofr, dr, and request timek (either real or predicted) to listD
12 end
13 end
14 SortD descending bydr then ascending byk
15 ReturnD

Listing 1: Prioritization algorithm.

requests to the service.
3) Scheduler update.The corresponding scheduler is up-

dated with the calculated priorities, so the requests to
the service can be ordered accordingly.

Iterations in the adaptation thread are performed with the
period of the half of the service’s response time. This value
equals to prediction period (See Listing 1, line 3). The value
was selected empirically. As it was evaluated in experiments,
if the period was greater, the algorithm performed poorer as
sometimes service throughput was unused too long while
waiting for predicted requests, however, the lesser period
did not improve the performance of the algorithm.

B. Deployment in a Service-oriented System

Although not the main focus of this work, we give a short
analysis of the mapping and deployment of our conceptual
architecture in real SOA environments. We assume that there
is single and accessible (in-house) orchestration engine.Our
approach would also work with multiple deployed orches-
tration engines in the environment. However, for simplicity
of discussions, we assume only a single engine. In order
to enable the deployment of the proposed architecture,
the orchestration engine should be extended to supply the
adaptation loops with process state information. Many SOAs
have moved towards a bus-oriented messaging backbone.
An enterprise service bus (ESB) should be configured to
support scheduler proxies. We expect these extensions to be
implemented as plugins for corresponding SOA components,
however, such an implementation fully depends on the
underlying technologies and software being used.

C. Prioritization Algorithm

The prioritization algorithm is outlined in Listing 1.
The algorithm predicts forthcoming calls of the service
and prioritizes the corresponding requests together with the
pending requests according to the penalty difference which
appears if the receiving of request’s reply is delayed. The
algorithm uses predictions which are performed straightfor-
wardly, adding together response times of the services to
be called according to the process structure. As for flows
and conditions, the most delayed branche’s time is selected.
Currently we address onlysequence, flow and condition
process constructs.

D. Illustrative Example

To illustrate the work of the algorithm, the algorithm steps
for two instances of comprehensive insurance claim scenario
process are described. Let the services have the same QoS
as in experimental setting (See Sec. V) and let both process
instances have SLA penalty functionsLS(t,3,10). Let the
processes have the states as depicted in Fig. 3. Instance 1 was
delayed for some reason. The Information request service
(IRS) was called 0.05 sec ago there, so the process is waiting
for its response; the Cost estimation service has already
returned the response. In instance 2 the Decision making
service (DMS) was called 0.01 sec ago. Given that DMS’s
request priorities are being adapted, the analysis step of its
adaptation loop’s next iteration would perform as shown in
Listing 2. Finally, whenD is sorted, the priority ofc1 is
considered higher than the priority ofc2.
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Figure 3. An example of process states.

// Process instance 1:
1 Instance 1 has no pending calls of DMS, however, as the

IRS is expected to respond in 0.05 sec (as its response time
is 0.1 sec), then the callc1 to DMS is predicted in 0.05 sec.

2 Default process finish time is calculated:
3.1 + 0.05 + 0.2 + 0.5 = 3.85 sec

3 Default penalty is calculated:LS(3.85, 3, 10) = 0
4 c1 is assumed to respond in0.2 ∗ 2 = 0.4 sec, Process

finish time is calculated:3.1 + 0.05 + 0.4 + 0.5 = 4.05 sec
5 The penalty for delayedc1 is calculated:
LS(4.05, 3, 10) = 10

6 The penalty difference forc1 is calculated:
dc1 = 10− 0 = 10

7 < c1, 10, 0.05 > is added toD
//
// Process instance 2:

8 Instance 2 has a pending DMS callc2. No other DMS calls
are predicted.

9 Default process finish time is calculated:
0.3 + 0.05 + 0.2 + 0.5 = 1.05 sec

10 Default penalty is calculated:LS(1.05, 3, 10) = 0
11 c2 is assumed to respond in0.2 ∗ 2 = 0.4 sec, Process

finish time is calculated:0.3 + 0.05 + 0.4 + 0.5 = 1.25 sec
12 The penalty for delayedc2 is calculated:

LS(1.25, 3, 10) = 0
13 The penalty difference forc2 is calculated:dc2 = 0− 0 = 0
14 < c2, 0,−0.01 > is added toD

Listing 2: Algorithm steps for the example.

V. EXPERIMENTS AND DISCUSSION

We have implemented an orchestration engine simulator
which mimics the QoS characteristics of services and the
execution of processes. It simulates the temporal behavior
of the system and supports basic process elements:sequence,
flow, and condition (executes with given probability). To
demonstrate the advantage of our approach, we simulate
unexpected overloads and delays in a service-oriented sys-
tem under various circumstances. We scaled the realistic
response times of the services for simulation from days to
seconds. So the half of a simulated second corresponds to
half of a day in real setting.

A. Setup

In our setup, several process types are repeatedly instanti-
ated in the system according to the frequencyF (t), as shown
in Fig. 4.

F(t), number of instantiated processes,

per second, approx.

time
T0

T’

T0/20

Figure 4. Experiment model.

The type of instantiated process is chosen randomly
(all types are considered equiprobable). The approximate
number of instantiated processes per second is increased
from F0 to F ′ for a periodT ′ in the middle of the overall
process instantiation timespanT0. The unexpected additional
load is thus simulated. The inaccuracy of response time is
simulated as well: the actual response time of a service is
calculated asRT+RT ∗k∗R whereRT - expected response
time,k - inaccuracy factor,R - normally distributed random
value.

We apply this system behavior for 6 series of experiments
(E1-E6) based on the motivating scenario (Sec. III). The ex-
periments are described in Table II. The processes typesT 1
and T 2 correspond to comprehensive insurance claim and
motor vehicle liability insurance claim processes. The QoS
values used for services simulation are presented in Table I
(the set of services maps to the steps of motivating scenario
processes). All experiments use response time inaccuracy
factor of 0.3. The conditions in both processes are assumed
to be true in 70% of cases. In E5 and E6, the analysis service
happens to be delayed by 0.5 sec in 10% of cases.

Table I
QUALITY OF SERVICE

Name Response time[sec] Throughput
Analysis service 0.15 5
Expertise service 0.50 5
Decision making service 0.20 5
Information request service 0.10 10
Estimation service 0.10 100
Registration service 0.01 100

In our simulation, throughput indicates the number of
simultaneous requests that can be served by a service. As
penalty functions, we used stagedLS and constantLC

functions (see Fig. 5).
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0 if t < t0
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Figure 5. Penalty functions.

Each experiment was performed 2 times: first time with no
adaptation with requests served in First-In-First-Out manner,
and the second time with the adaptation enabled. Penalties
were measured for each process. As the simulation involves
various random factors (process instantiation, process type
selection, error and unexpected delay injection, conditions),
we made sure that such experiments get the same values
returned by random generators. The results of experiments
are depicted in figures 6-8.

Table II
EXPERIMENTS PERFORMED

Name Process types: penalty functions T’ F’
E1 T1 : LS(t,3,10) only 5 19 - 26
E2 3 - 10 20
E3 T1 : LS(t,3,10), T2 :LC (t,8,20) 5 22 - 29
E4 3 - 9 25
E5 T1 : LS(t,3,10), T1 :LS (t,3,15),

T1 : LS(t,3,20), T2 :LC (t,8,20)
6 19 - 26

E6 3 - 9 22

B. Discussion

All experiments demonstrate a considerable reduction of
penalties of 30-80%. In the following we show pairs of
figures: the left figure showing SLA penalties by varying
F’ and the right figure by varyingT’ .
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Figure 6. One process type, without delays.

In experiments E1 and E2 (see Fig. 6) the absolute
difference between penalties is relatively constant whichis
explained by the similarity of executed processes: only one
process type is instantiated, no difference among instances
in form of service delays, the only difference is the varietyof
response times resulted by the inaccuracy factor. Thus, these
experiments give very limited freedom for re-prioritization.
Still, the adaptation reduces penalty considerably.

In experiments E3-E6 (see Fig. 7 and Fig. 8) the reduction
is greater than in E1-E2 because of the possibility to
postpone the service calls in T2 processes at no expense
(t0 = 8 for LC).
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Figure 7. Two process types, without delays.
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Figure 8. Four process types, with delays.

This is revealed mostly in E3 and E4 as approximately
half of the processes were of type T2. In E5 and E6 the
reduction is lesser than in E3 and E4, because only quarter of
processes were of type T2. In contrast to E1-E2, the absolute
difference between penalties in E3-E6 grows with the load
increment, as the process pool contains various types of
processes which causes the dissimilarity of re-prioritization
impact, and, thus, increases the algorithm’s efficiency. The
non-monotonicity of penalty growth in E3-E6 is caused by
the random factors in process generation and instantiation
mechanism. To summarize these observations, the performed
experiments clearly show the advantage of using adaptation
for prioritizing requests in case of unexpected overload or
response delays.

Of course, the are limits for applying the adaptation.
These limits are reached when the time needed to perform an
analysis iteration of the orchestration engine state becomes
comparable with the response times of the services whose
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request priorities are being adapted. For example, in the
experiment with largeF ′ shown in Fig. 9, the method
becomes inefficient onF ′ > 190 (the maximal size of the
process pool is about 600 processes). However, this limit
would scale together with response times of the services,
and, in our opinion, will be hardly reachable in a real setting.

VI. CONCLUSION AND FUTURE WORK

The problem of SLA penalties reduction in the context
of unexpected system overload or service response delays is
considered in the paper. The architecture for request schedul-
ing in service-oriented systems and the request prioritization
algorithm are proposed. A realistic motivating scenario was
taken as a basis for evaluation. The proposed solution was
evaluated for the scenario implemented in an orchestration
engine simulator. The results of evaluation demonstrate the
considerable (30-80%) penalty reduction, thus, showing the
clear advantage of the approach. Generally, our approach
has no special requirements for SOA system, so it has no
obstacles to be applied in practice.

In our future work we plan to adapt and evaluate existing
scheduling algorithms to request prioritization problem and
to compare their efficiency to our algorithm’s. Also we
plan to extend the model to allow different services to
share the resources, so, for example, if one human is
assigned to perform different tasks represented by different
services, the system will be aware that the call of one
service would impact the QoS of another. Also, we plan
to extend our approach towards crowdsourcing scenarios
[14], [15]. Systems such as Amazon Mechanical Turk[16]
make the capabilities of an open workforce available by
letting requesters issue human-intelligent task requests. The
challenge in such environments is the limited predictability
of resource availability (human workers) and behavior (e.g.,
task acceptance behavior). Apart from algorithmic aspects
(scheduling and assignment of workers), models and spec-
ifications (such as WS-HumanTask [17] and BPEL4People
[18]) for composing services need to be extended to cope
with the dynamics inherent to open Web-based environ-
ments. For example, providing adaptive escalation models
based on different SLAs or extending temporal aspects that
can be modeled in WS-HumanTask with penalty functions.
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