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Abstract—The availability of scarce resources in a service- shared resources in a singleton manner. Assume a process
oriented system demands for context-aware selection poies  consisting of multiple activities, some of them enactedrby i
that adapt based on service-level agreements (SLAs). One of \,ing software services and certain activities perforingd

the open issues s to prioritize service requests in dynami human actors. In a service-oriented system, such a scenario
cally changing environments where concurrent instances of : y ’

processes may compete for resources. Here we propose a could be realized by modeling and enacting compositions
runtime monitoring approach to observe the actual state ofhie  using the Business Process Execution Language (BPEL) [3],
system. We argue that priorities should be assigned to reqsés  where human steps are modeled using BPEL4People and
based on potential violations of SLA objectives. While most WS-HumanTask [4], [5]. Service provided by human actors
existing work in the area of quality of service monitoring ard b ded ' | th hout . b hu-
SLA modeling focuses typically on purely technical systems can be regarded as ‘fow throughput' services because hu
we consider service-oriented systems spanning both softrea ~ Mans naturally work at lower speeds than software-based
based services and human actors. Adaptive request scheduli ~ services. If human-based low throughput services are part
in such systems is challenging due to the poorly predictable of a process, the order in which processes get the response
behavior of human actors in performing tasks. Our approach — fom sych services impacts the process execution times. If
helps to cope with these challenges by prioritizing service th t t loaded late d
requests that may cause violations of SLAs and correspondin € sysiem gets overloadead or So_me proc_esses are late due
objectives that are associated with processes. to unexpected delays, the SLAs might be violated. However,
the control over the ordering of service requests can reduce

the penalties or prevent the violations at all.

To address these challenges, we propose a dynamic adap-
. INTRODUCTION tation approach and heuristic prioritizing algorithm thaga-

lyzes the current state of the service-oriented systemrat ru

Service-oriented systems have become an important agime and prioritizes service requests according to assigne
proach and technological framework to solve problems,igcess SLAs. We assume that the execution state of all
in distributed computing environments. Challenges in disy,e processes in a service-oriented system is accessildle, a
tributed service-oriented systems include the discovéry oy at the penalty functions of SLAs are provided. The main
resources and monitoring of the system’s runtime behavioyea pehind the algorithm is that the priority of a service
Capturing the current state of the system is essential iRyecytion is given to those processes that are expected to
dynamic environments where services are discovered angoqyce the highest penalties if this service is delayed for
invoked at runtime. Research in the area of quality of servic \hom. To illustrate our approach, we discuss insurancenclai

(QoS) modeling and monitoring (e.g., see [1]) has proVide?)rocesses. The contributions of the paper are as follows:
an important building block to observe the runtime state o

a service-oriented system. Service-level agreements ¢5LA , We present the conceptual approach for service request
let service providers specify quality criteria demanded by prioritization in orchestration engines.
consumers [2]. Keeping services compliant to SLAs is , \We design a priority assignment algorithm to cope with

Keywords-service-oriented systems, monitoring, adaptation,
service-level agreements, scheduling, human factors

crucial in a service-oriented system. Usually, if the sysie the challenges in dynamic SOA.
designed properly and acts as expected (e.g., response time, \We present a detailed evaluation of our approach to
and service availability), the SLA is satisfied. Howevelthbo demonstrate its effectiveness and efficiency.

internal and external factors can compromise the overall pe

formance of the system. While the strategic actions should The paper is organized as follows: Section Il overviews
be taken to prevent the system from entering undesirableelated work with the focus on adaptation techniques in
conditions (e.g., through replicating the componentsjragld service-oriented systems. In section Il we present a mo-
resources), the run-time adaptation can also be performei/ating scenario and in section IV the adaptation model.
in attempt to minimize the penalties in given situations. InExperiments are shown in section V. The paper is concluded
this work, we assume that multiple processes need to accesssection VI.
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(a) Comprehensive insurance. (b) Liability insurance.

Figure 1. Claim processes for different insurance cases.

Il. RELATED WORK performance overhead used for the analysis.

Our approach is aiming at minimizing SLA penalties via "€ approaches like [11], [12] use dynamic binding to
prioritizing the requests and assigning the available seriMProve the QoS of process instances, whereas our approach
vice throughput. Such an objective constitutes a scheglulindo€s not assume the existence of several service endpoints.

problem. Among the variants of this problem, the resource-
constrained multi-project scheduling problem (RCMPSP) [6
is the most conformable to ours. However, those studies do To illustrate our approach, we discuss a motivating sce-
not address the service-oriented architecture, and, lifaere nario where processes are designed and executed in the
related concepts such as SLA or QoS. context of insurance claim handling. We look at different
A priority scheduling method for process engines is pro-kinds of insurance processes: the first one dealing with a
posed in [7]. It analyzes the execution status in the processomprehensivinsurance plan and the second wiidibility
engine and dynamically assigns the priorities to service&coverage. Both cases are depicted in Fig. 1.
requests alike to our approach. Instead of penalty funstion The comprehensive plan ensures that damage (for example
it considers utility functions. However, this work assumesaccidents or vandalism) is being paid by the insurance
that services support prioritized execution of requesth wi company. In certain European countries, liability is the
either High or Low priority. Such an assumption has two minimum insurance coverage everyone must have due to
strong disadvantages: firstly, it severely reduces theesobp government regulations. As an example, if A is responsible
application, as services do not support prioritized exeout for the damage of B, then As insurance company must
in general, and, secondly, even if a service distinguishepay for B’s damage. Fig. 1(a) shows the process for the
between requests with high and low priorities, it would comprehensive insurance plan. People obtaining coverage
still not be able to distinguish between requests with thehrough this plan may be regular or premium customers.
same priority which is crucial in case of multiple concutren For premium customers, the insurance company wants to
requests and low service throughput. Unlike it, our appnoac provide better quality of service as for regular customers.
uses essentially different prioritization algorithm aeduest For example, faster processing of the insurance claim. The
scheduling (via proxy schedulers), so it does not have thegerocess is initiated as soon as the customer issues an
disadvantages. insurance claim. The registration of the claim is performed
SLA violation and prevention in service compositions automatically by a software service. In the next step the
through adaptation is addressed by various researchars. Horocess splits into two parallel branches. Based on thedssu
example, [8] proposes a general adaptation framework foclaim, a software service is invoked (stEgtimate Cogtto
monitoring and preventing SLA violations by performing perform an automatic calculation of the expected costs. A
various actions upon the service composition, like chaggin person from the insurance company analyzes the received
the service bindings or composition structure. In contrast claim and typically requests further information from the
it, our approach does not address the composition changesjstomer. After both branches have finished, a decision is
but request prioritization among different compositions.  made by a supervisor. The outcome may be to reimburse
Various escalation mechanisms to avoid breaking thehe customer or not. In the first case, an expert reviews the
workflow deadlines are discussed in [9]. The prioritizationcase by visiting the customer to obtain precise understgndi
of tasks or cases which is highly related by implication,of the damage upon which actual calculations are made.
is briefly discussed. However, the paper does not considerhe alternate case terminates by sending a (auto-)gederate
SLAs and penalties, and no rationale regarding the actualotification to the customer.
implementation of the method is given. The second process example is shown in Fig. 1(b). In con-
Trade-offs between costs and profits of various servicdrast to the comprehensive insurance example in Fig. 1(a),
composition adaptations are discussed in [10]. The adaptave assume in this scenario that the person filing the claim
tion proposed by us does not imply any costs besides this not a customer of the insurance company. The process

IIl. SCENARIO
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Figure 2. The overall architecture of the approach.

is therefore simpler because the person filing the insurancgervice’s implementation which is unaware of processes run
claim only receives limited support (e.g., help desk) andning, SLAs, or other context information. In our approach,
also limited service-level guarantees are given. The @m®ce a scheduler proxy is created and assigned to each service
is initiated in the same manner as in the comprehensivevhose request priorities are being adapted. The scheduler
insurance plan example. Afterwards, a decision is mad@roxy intercepts requests to the service and reorders them
based on received information. The next steps are agaiaccording to prior defined priorities. The scheduler is @war
equivalent to the step$érform Expertiseand notification) of the service’s QoS (through the monitoring module), so
of the first process. it dispatches requests towards the service depending on the
What these processes have in common is that they acceasailable free capacities. It ensures that the priorities a
shared resources. For example, by invoking a service in thebeyed. The priorities are periodically set by an adaptatio
step Perform Expertiself a process invokes this service, loop created for the service. As the re-ordering is perfarme
other processes (instances) may need to wait until frebefore the requests are sent to a service, the actual lacatio
resource capacities are available. However, this couldecau of the service does not play a role.
violations in SLA objectives. Thus, careful scheduling of The adaptation loop consists of three phases:

requests is needed to satisfy customer needs. 1) Collection of context and monitoring informatiofihe

IV. ADAPTATION MODEL structure, the current execution state, and penalty func-
In this section we describe the conceptual architecture of ~ tions (from SLAs) of all currently running processes
our solution, the prioritization algorithm, and the remsrk as well as the QoS information are collected from the
regarding the deployment of such a solution in a real SOA. ~ Orchestration engine and from the monitoring mod-
We assume that all services in the system are atomic (not  ule respectively. We use a deterministic QoS model,
composite), as we can decompose all such services. so the throughput and response time are considered
) single values. There exist various approaches for QoS
A. Conceptual Architecture monitoring (e.g., [1], [13]) which is out of the paper’s

The architecture of the approach is depicted by Fig. 2. focus.
Normally, when a process invokes a service, a request 2) Calculation of request prioritiesThe collected data is
message is sent to the service endpoint, so the order in which ~ passed to the algorithm (described in Listing 1) which
requests are processed by a service is determined by this  calculates priorities for forthcoming and recently made



Input : ServicesS, its response tim&ry, set of processe®, for each procesg penalty functionLZ,(t)
Output: Ranked requests
1 for processp in P do
2 R, = pending requests df in p
3 R. = requests ofS predicted to be made duringiz/2 period inp
4 R=R,UR,
5 Assume that replies of all requests fhare received afte6gr, predict timet of finish for proces®
6 lo=Ly(t) /1 Default penalty
7 for requestr in R do
8 Assume that a reply of is received aftetlSg « 2 and replies of all other requests i are received after
Sgrr, predict timet,. of finish for p
9 I, = Ly(t,) 11 Penalty for current request
10 d.=1.—1yp Il Difference between default penalty and the penalty for current request
11 Add the tuple ofr, d,, and request timé (either real or predicted) to lisD
12 end
13 end
14 Sort D descending byl,. then ascending by
15 ReturnD

Listing 1: Prioritization algorithm.

requests to the service. C. Prioritization Algorithm

3) Scheduler updaterhe corresponding scheduler is up-
dated with the calculated priorities, so the requests to The prioritization algorithm is outlined in Listing 1.
the service can be ordered accordingly. The algorithm predicts forthcoming calls of the service

. . . . and prioritizes the corresponding requests together wiigh t
Iterations in the adaptation thread are performed with the . : . .
period of the half of the service’s response time. This valué)endlng requests according to the penalty difference which

equals to prediction period (See Listing 1, line 3). The galu appears if the receving of requests reply is delaye_d. The
. . . i algorithm uses predictions which are performed straightfo
was selected empirically. As it was evaluated in experisent

) : . wardly, adding together response times of the services to

if the period was greater, the algorithm performed poorer ag .

sometimes service throuahout was unused too lona whil e called according to the process structure. As for flows
. . gnhp 9 W& nd conditions, the most delayed branche’s time is selected

waiting for predicted requests, however, the lesser perio

: . . urrently we address onlgequenceflow and condition
did not improve the performance of the algorithm. y yequence
process constructs.

B. Deployment in a Service-oriented System
D. lllustrative Example

Although not the main focus of this work, we give a short
analysis of the mapping and deployment of our conceptual To illustrate the work of the algorithm, the algorithm steps
architecture in real SOA environments. We assume that therf®r two instances of comprehensive insurance claim scenari
is single and accessible (in-house) orchestration en@ioe. process are described. Let the services have the same QoS
approach would also work with multiple deployed orches-as in experimental setting (See Sec. V) and let both process
tration engines in the environment. However, for simpjicit instances have SLA penalty functiors(t,3,10). Let the
of discussions, we assume only a single engine. In ordeprocesses have the states as depicted in Fig. 3. Instance 1 wa
to enable the deployment of the proposed architecturejelayed for some reason. The Information request service
the orchestration engine should be extended to supply th@RS) was called 0.05 sec ago there, so the process is waiting
adaptation loops with process state information. Many SOAdor its response; the Cost estimation service has already
have moved towards a bus-oriented messaging backbonesturned the response. In instance 2 the Decision making
An enterprise service bus (ESB) should be configured tservice (DMS) was called 0.01 sec ago. Given that DMS'’s
support scheduler proxies. We expect these extensions to lbequest priorities are being adapted, the analysis stefs of i
implemented as plugins for corresponding SOA componentgdaptation loop’s next iteration would perform as shown in
however, such an implementation fully depends on the.isting 2. Finally, whenD is sorted, the priority of; is
underlying technologies and software being used. considered higher than the priority of.
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3 Default penalty is calculated:5(3.85,3,10) =0
4 ¢ is assumed to respond h2 x 2 = 0.4 sec, Process

/'l Process instance 1:
Instance 1 has no pending calls of DMS, however, as th
IRS is expected to respond in 0.05 sec (as its response

is 0.1 sec), then the cadk to DMS is predicted in 0.05 sec|

Default process finish time is calculated:
3.14+0.05+0.2+ 0.5 = 3.85 sec

finish time is calculated3.1 + 0.05 + 0.4 4+ 0.5 = 4.05 sec
The penalty for delayed; is calculated:

Ls(4.05,3,10) = 10

The penalty difference for; is calculated:

de;, =10—-0=10

< ¢1,10,0.05 > is added toD

I

/'l Process instance 2:

Instance 2 has a pending DMS cadl. No other DMS calls
are predicted.

Default process finish time is calculated:
0.340.0564+0.24 0.5 =1.05 sec

Default penalty is calculated:.s(1.05,3,10) =0

c2 is assumed to respond (h2 x 2 = 0.4 sec, Process
finish time is calculated0.3 + 0.05 + 0.4 4 0.5 = 1.25 sec
The penalty for delayeds is calculated:

Ls(1.25,3,10) =0

The penalty difference fot; is calculatedd., =0—-0=0
< ¢2,0,—0.01 > is added toD

=Y

time

Listing 2: Algorithm steps for the example.

V. EXPERIMENTS AND DISCUSSION

A. Setup

In our setup, several process types are repeatedly instanti
ated in the system according to the frequefty), as shown
in Fig. 4.

F(t), number of instantiated processes,
per second, approx.

A

» time

Tol2 To

T

Figure 4. Experiment model.

The type of instantiated process is chosen randomly
(all types are considered equiprobable). The approximate
number of instantiated processes per second is increased
from Fy to F’ for a periodT” in the middle of the overall
process instantiation timespdp. The unexpected additional
load is thus simulated. The inaccuracy of response time is
simulated as well: the actual response time of a service is
calculated aT+ RT xkx R whereRT - expected response
time, k - inaccuracy factorR - normally distributed random
value.

We apply this system behavior for 6 series of experiments
(E1-E6) based on the motivating scenario (Sec. Ill). The ex-
periments are described in Table Il. The processes tyjies
and T2 correspond to comprehensive insurance claim and
motor vehicle liability insurance claim processes. The QoS
values used for services simulation are presented in Table |
(the set of services maps to the steps of motivating scenario
processes). All experiments use response time inaccuracy
factor of 0.3 The conditions in both processes are assumed
to be true in 70% of cases. In E5 and E6, the analysis service
happens to be delayed by 0.5 sec in 10% of cases.

Table |
QUALITY OF SERVICE

We have implemented an orchestration engine simulatd

which mimics the QoS characteristics of services and th

execution of processes. It simulates the temporal behavig

of the system and supports basic process elemssgsience

flow, and condition (executes with given probability). To

demonstrate the advantage of our approach, we simula

r Name Response timgsec] | Throughput
L. Analysis service 0.15 5
_Expertise service 0.50 5
"Decision making service 0.20 5

Information request service 0.10 10

Estimation service 0.10 100
SRegistration service 0.01 100

unexpected overloads and delays in a service-oriented sys-

tem under various circumstances. We scaled the realistic In our simulation, throughput indicates the number of
response times of the services for simulation from days tsimultaneous requests that can be served by a service. As
seconds. So the half of a simulated second corresponds fenalty functions, we used stagdds and constantlLq

half of a day in real setting.

functions (see Fig. 5).
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Figure 5. Penalty functions.

Each experiment was performed 2 times: first time with no

adaptation with requests served in First-In-First-Out n&an

and the second time with the adaptation enabled. Penaltiec
were measured for each process. As the simulation involves
various random factors (process instantiation, process ty

selection, error and unexpected delay injection, conuifip
we made sure that such experiments get the same values

returned by random generators. The results of experiments

are depicted in figures 6-8.

Table Il

EXPERIMENTS PERFORMED

Name | Process types: penalty functions T F
El . 5| 19-26
= T1: Lg(t,3,10) only 310 50
E3 . . 51 22-29
= T1: Lg(t,3,10), T2 : L (t,8,20) 39 55
E5 | T1: Lg(t,3,10), T1 :Lg(t,3,15), 6 | 19-26
E6 | T1: Lg(t,3,20), T2 :L(t,8,20) 3-9 22

B. Discussion

All experiments demonstrate a considerable reduction o
penalties of 30-80%. In the following we show pairs of
figures: the left figure showing SLA penalties by varying

F’ and the right figure by varying’.
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Figure 6. One process type, without delays.

In experiments E1 and E2 (see Fig. 6) the absolute
difference between penalties is relatively constant wich
explained by the similarity of executed processes: only one
process type is instantiated, no difference among instance
in form of service delays, the only difference is the variety
response times resulted by the inaccuracy factor. Thusethe
experiments give very limited freedom for re-prioritizati
Still, the adaptation reduces penalty considerably.

In experiments E3-E6 (see Fig. 7 and Fig. 8) the reduction
is greater than in E1-E2 because of the possibility to
postpone the service calls in T2 processes at no expense
(to = 8 for L¢).
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Figure 7. Two process types, without delays.
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Figure 8. Four process types, with delays.

This is revealed mostly in E3 and E4 as approximately
half of the processes were of type T2. In E5 and E6 the
¥eduction is lesser than in E3 and E4, because only quarter of
processes were of type T2. In contrast to E1-E2, the absolute
difference between penalties in E3-E6 grows with the load
increment, as the process pool contains various types of
processes which causes the dissimilarity of re-prioftiira
impact, and, thus, increases the algorithm’s efficiencye Th
non-monotonicity of penalty growth in E3-E6 is caused by
the random factors in process generation and instantiation
mechanism. To summarize these observations, the performed
experiments clearly show the advantage of using adaptation
for prioritizing requests in case of unexpected overload or
response delays.

Of course, the are limits for applying the adaptation.
These limits are reached when the time needed to perform an
analysis iteration of the orchestration engine state besom
comparable with the response times of the services whose
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Figure 9. Large values.

request priorities are being adapted. For example, in the[ I
experiment with largeF” shown in Fig. 9, the method
becomes inefficient od” > 190 (the maximal size of the
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[1]

(2]

process pool is about 600 processes). However, this limit[4]
would scale together with response times of the services,

and, in our opinion, will be hardly reachable in a real settin

VI. CONCLUSION AND FUTURE WORK

The problem of SLA penalties reduction in the context

(5]

of unexpected system overload or service response delays ig]

considered in the paper. The architecture for request s¢hed
ing in service-oriented systems and the request priotitiza
algorithm are proposed. A realistic motivating scenaris wa

. . . 7
taken as a basis for evaluation. The proposed solution Wa4 ]
evaluated for the scenario implemented in an orchestration
engine simulator. The results of evaluation demonstrate th [8]

considerable (30-80%) penalty reduction, thus, showirg th

clear advantage of the approach. Generally, our approach
has no special requirements for SOA system, so it has NO9] W. Van Der Aalst, M. Rosemann, and M. Dumas, “Deadline-

obstacles to be applied in practice.

In our future work we plan to adapt and evaluate existing
scheduling algorithms to request prioritization problemd a
to compare their efficiency to our algorithm’s. Also we

(10]

plan to extend the model to allow different services to[y1j
share the resources, so, for example, if one human is

assigned to perform different tasks represented by differe
services, the system will be aware that the call of on
service would impact the QoS of another. Also, we pla

r‘?[12]

to extend our approach towards crowdsourcing scenarios

[14], [15]. Systems such as Amazon Mechanical Turk[16]

make the capabilities of an open workforce available byl13]

letting requesters issue human-intelligent task requésis

challenge in such environments is the limited predictgbili [14]
of resource availability (human workers) and behavior.(e.g

task acceptance behavior). Apart from algorithmic aspects
(scheduling and assignment of workers), models and spe¢l5] D.Brabham, “Crowdsourcing as a model for problem sujvi
ifications (such as WS-HumanTask [17] and BPEL4People
[18]) for composing services need to be extended to cop 6] Amazon Mechnical Turk, http://www.mturk.com, Feb.120

with the dynamics inherent to open Web-based environi17] m. Fordet al, “Web Services Human Task (WS-HumanTask),
ments. For example, providing adaptive escalation models

based on different SLAs or extending temporal aspects thd#8] A. Agrawal et al, “WS-BPEL Extension for People

can be modeled in WS-HumanTask with penalty functions.

4] J. Howe,
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