
The VLDB Journal (2011) 20:277–302
DOI 10.1007/s00778-011-0226-x

SPECIAL ISSUE PAPER

Normalization and optimization of schema mappings

Georg Gottlob · Reinhard Pichler · Vadim Savenkov

Received: 23 August 2010 / Accepted: 8 February 2011 / Published online: 16 March 2011
© Springer-Verlag 2011

Abstract Schema mappings are high-level specifications
that describe the relationship between database schemas.
They are an important tool in several areas of database
research, notably in data integration and data exchange.
However, a concrete theory of schema mapping optimiza-
tion including the formulation of optimality criteria and the
construction of algorithms for computing optimal schema
mappings is completely lacking to date. The goal of this
work is to fill this gap. We start by presenting a system of
rewrite rules to minimize sets of source-to-target tuple-gen-
erating dependencies. Moreover, we show that the result of
this minimization is unique up to variable renaming. Hence,
our optimization also yields a schema mapping normaliza-
tion. By appropriately extending our rewrite rule system, we
also provide a normalization of schema mappings contain-
ing equality-generating target dependencies. An important
application of such a normalization is in the area of defining
the semantics of query answering in data exchange, since
several definitions in this area depend on the concrete syn-
tactic representation of the mappings. This is, in particular,
the case for queries with negated atoms and for aggregate
queries. The normalization of schema mappings allows us to

G. Gottlob
Computing Laboratory, Oxford University, Room 358,
Wolfson Building, Parks Road, Oxford OX1 3QD,
United Kingdom
e-mail: georg.gottlob@comlab.ox.ac.uk

R. Pichler · V. Savenkov (B)
Database and Artificial Intelligence Group,
Institute of Information Systems,
Vienna University of Technology, Favoritenstrasse 9,
1040 Vienna, Austria
e-mail: savenkov@dbai.tuwien.ac.at

R. Pichler
e-mail: pichler@dbai.tuwien.ac.at

eliminate the effect of the concrete syntactic representation
of the mapping from the semantics of query answering. We
discuss in detail how our results can be fruitfully applied to
aggregate queries.

Keywords Data integration · Data exchange · Schema
mappings optimization

1 Introduction

Schema mappings are high-level specifications that describe
the relationship between two database schemas. They play an
important role in data integration [14,19] and data exchange
[9]. A schema mapping is usually given in the form M =
〈S,T, �〉, indicating the two database schemas S and T plus
a set� of dependencies. These dependencies express condi-
tions that instances of S and T must fulfill. In data exchange,
S and T are referred to as source and target schema. The
dependencies � specify, given a source instance (i.e., an
instance of S), what a legal target instance (i.e., an instance
of T) may look like. Similarly, in data integration, a schema
mapping M describes the relationship between a local data
source and a global mediated schema.

Over the past years, schema mappings have been
extensively studied (see [6,18] for numerous pointers to the
literature). However, only recently, the question of schema
mapping optimization has been raised. In [10], the foundation
for optimization has been laid by defining various forms of
equivalence of schema mappings and by proving important
properties of the resulting notions. However, a concrete the-
ory of schema mapping optimization including the formula-
tion of optimality criteria and the construction of algorithms
for computing optimal schema mappings is completely lack-
ing to date. The goal of this work is to fill this gap. Below,

123

278 G. Gottlob et al.

we illustrate the basic ideas of our approach by a series of
simple examples, where it is clear “at a glance” what the opti-
mal form of the schema mappings should look like. In fact,
one would expect that a human user designs these mappings
in their optimal form right from the beginning. However,
as more and more progress is made in the area of automatic
generation and processing of schema mappings [5,6] we shall
have to deal with schema mappings of ever increasing com-
plexity. The optimality of these automatically derived schema
mappings is by no means guaranteed, and schema mapping
optimization will become a real necessity.

For the most common form of schema mappings consid-
ered in the literature, the dependencies in � are source-to-
target tuple-generating dependencies (or s-t tgds, for short)
of the form ∀x (ϕ(x)→ ∃y ψ(x, y)) ,where the antecedent
ϕ is a conjunctive query (CQ) over S and the conclusion ψ
is a CQ over T. The universal quantification is usually not
denoted explicitly. Instead, it is assumed implicitly for all
variables in ϕ(x).

Example 1 Consider a schema mapping M = 〈S,T, �〉
with S = {L(·, ·, ·), P(·, ·)} and T = {C(·, ·)}, where L , P ,
and C are abbreviations for the relational schemas Lec-
ture(title, year, prof), Prof(name, area), and Course (title,
prof-area), respectively. Moreover, suppose that � consists
of two rules expressing the following constraints: If any lec-
ture is specified in the source instance, then the title of all
lectures for 3rd year students as well as the area of the pro-
fessor giving this lecture should be present in the Course
relation of the target instance. Moreover, � contains a spe-
cific rule which takes care of the lectures given by professors
from the database area. We get the following set� of s-t tgds:

L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P(x5, x6)→ C(x4, x6)

L(x1, 3, x2) ∧ P(x2,
′db′)→ C(x1,

′db′) 	

The above schema mapping has a specific form called GAV
(global-as-view) [19], i.e., we only have s-t tgds ϕ(x) →
A(x), where the conclusion is a single atom A(x) without
existentially quantified variables. In this special case, we see
a close relationship of schema mappings with unions of con-
junctive queries (UCQs). Indeed, given a source instance I
over S, the tuples that have to be present in any legal target
instance J according to the above schema mapping M are
precisely the tuples in the result of the following UCQ:

ans(x4, x6) : −L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P(x5, x6)

ans(x1,
′db′) : −L(x1, 3, x2) ∧ P(x2,

′db′).

The goal of UCQ optimization is usually twofold [7,25],
namely to minimize the number of CQs and to minimize
the number of atoms in each CQ. In the above UCQ, we
would thus delete the second CQ and, moreover, eliminate
the first atom from the body of the first CQ. In total, the
above UCQ can be replaced by a single CQ ans(x4, x6) :-

L(x4, 3, x5) ∧ P(x5, x6). Analogously, we would naturally
reduce the set� of two s-t tgds in Example 1 to the singleton
�′ = {L(x4, 3, x5) ∧ P(x5, x6)→ C(x4, x6)}.

As mentioned above, GAV mappings are only a special
case of schema mappings given by s-t tgds which, in the
general case, may have existentially quantified variables and
conjunctions of atoms in the conclusion. Note that the exis-
tentially quantified variables are used to represent incomplete
data (in the form of marked nulls [16]) in the target instance.
Hence, as an additional optimization goal, we would like to
minimize the number of existentially quantified variables in
each s-t tgd. Moreover, we would now also like to minimize
the number of atoms in the CQ of the conclusion.

Example 2 We revisit Example 1, and consider a new map-
ping M in the reverse direction so to speak: Let M =
〈S,T, �〉 with S = {C(·, ·)} and T = {L(·, ·, ·), P(·, ·)}
where L , P , and C are as before. Moreover, let� be defined
as follows:

� = {C(x1, x2)→ (∃y1, y2, y3, y4)L(y1, y2, y3) ∧
L(x1, 3, y4) ∧ P(y4, x2),

C(x1,
′db′)→ (∃y1)L(x1, 3, y1) ∧ P(y1,

′db′)}
Clearly, � is equivalent to the singleton

�′ = {C(x1, x2)→ (∃y4)L(x1, 3, y4) ∧ P(y4, x2)}.
	

The above schema mapping corresponds to the special case
of LAV (local-as-view) [19] with s-t tgds of the form A(x)→
∃y ψ(x, y), where the antecedent is a single atom A(x) and
all variables in A(x) actually do occur in the conclusion. In
the most general case (referred to as GLAV mappings), no
restrictions are imposed on the CQs in the antecedent and
conclusion nor on the variable occurrences. In order to for-
mulate an optimality criterion for schema mappings with s-t
tgds of this general form, the analogy with UCQs does not
suffice. Indeed, the following example illustrates that we may
get a highly unsatisfactory result if we just aim at the minimi-
zation of the number of s-t tgds and of the number of atoms
inside each s-t tgd.

Example 3 Let M = 〈S,T, �〉 with S = {L(·, ·, ·)} and
T = {C(·, ·), E(·, ·)} where L and C are as before and E
denotes the schema Equal-Year(course1, course2), i.e., E
contains pairs of courses designed for students in the same
year. Moreover, let � be defined as follows:

� = {L(x1, x2, x3)→ (∃y)C(x1, y),

L(x1, x2, x3) ∧ L(x4, x2, x5)→ E(x1, x4)}
Then, � is equivalent to the singleton �′ with the tgd

L(x1, x2, x3) ∧ L(x4, x2, x5)→ (∃y)C(x1, y) ∧ E(x1, x4)

123

Normalization and optimization 279

Now suppose that the title attribute is a key in Lecture. Let li
denote the title of some lecture in a source instance I , and sup-
pose that I contains m lectures for students in the same year
as li . Then, the computation of the canonical universal solu-
tion (for details, see Sect. 2) yields two results of significantly
different quality depending on whether we take � or �′: In
case of �, we get one tuple C(li , y) with this course title li .
In contrast, for �′, we get m tuples C(li , y1), . . . ,C(li , ym)

with the same course title li . The reason for this is that the s-t
tgd “fires” for every possible combination of key values x1

and x4, although for the conjunct C(x1, y) in the conclusion,
only the value of x1 is relevant. 	

We shall refer to the two s-t tgds in � of the above example
as the split form of the s-t tgd in�′. We shall formally define
splitting of s-t tgds in Sect. 3. Intuitively, splitting aims at
breaking up the conclusion of an s-t tgd in smaller parts such
that the variables in the antecedent are indeed related to the
atoms in the conclusion. Without this measure, any target
instance would be artificially inflated with marked nulls as
we have seen with �′ in the above example. Splitting helps
to avoid such anomalies. Indeed, it can be seen as an anal-
ogous operation to the decomposition of relational schemas
into normal form where we also want to exclude that some
attributes are fully determined by parts of a key. Carrying
over this idea to s-t tgds, we want to exclude that some atoms
in the conclusion are fully determined by parts of the atoms in
the antecedent. Our first optimization goal for schema map-
pings will therefore be to minimize the number of s-t tgds
only to the extent that splitting should be applied whenever
possible. Minimizing the size of each s-t tgd and the number
of existentially quantified variables in the conclusion will,
of course, be pursued as another optimization goal. We thus
have the following optimality criteria for sets � of s-t tgds:

– cardinality-minimality, i.e., the number of s-t tgds in �
shall be minimal;

– antecedent-minimality, i.e., the total size of the anteced-
ents of the s-t tgds in � shall be minimal;

– conclusion-minimality, i.e., the total size of the conclu-
sions of the s-t tgds in � shall be minimal;

– variable-minimality, i.e., the total number of existentially
quantified variables in the conclusions shall be minimal.

Then, a set of s-t tgds is optimal, if it is minimal w.r.t. each of
these four criteria. Following the above discussion, we only
take s-t tgds into consideration for which no further splitting
is possible. (We shall give a formal definition of this property
and of the four optimality criteria in Sect. 3). Cardinality-
minimality together with antecedent-minimality means that
the cost of the join-operations is minimized when computing
a canonical universal solution for some given source instance.
Conclusion-minimality and variable-minimality mean that

no unnecessary incomplete facts are introduced in the canoni-
cal universal solution. For the transformation of arbitrary sets
of s-t tgds into optimal ones, we shall present a novel system
of rewrite rules. Moreover, we shall show that the optimal
form of a set of s-t tgds is unique up to variable renaming.

In other words, our optimization of schema mappings is
also a normalization of schema mappings. As an immediate
benefit of a normalization, we get a purely syntactical cri-
terion for testing the equivalence of two schema mappings.
Another, even more important application of such a normali-
zation is in the area of defining the semantics of query answer-
ing in data exchange. Several definitions in this area depend
on the concrete syntactic representation of the s-t tgds. This
is, in particular, the case for queries with negated atoms (see
e.g., [2,20]) and for aggregate queries (see [1]). This seman-
tical dependence on the syntax of a mapping clearly is unde-
sirable. Since the minimal set of s-t tgds produced by our
rewrite rules is unique up to variable renaming, we can use
it as the desired normal form, which eliminates the effect of
the concrete representation of the s-t tgds from the semantics
of query answering.

Example 4 Consider a schema mapping M = 〈S,T, �〉
with S = {S(·, ·, ·)},T = {L(·, ·, ·), P(·, ·)}, where L and
P are as in Example 2. S denotes the relational schema Stu-
dent(name, year, area). Moreover, let � express the fol-
lowing constraints: If there exists a student in any year, then
there should exist at least one lecture for this year. Moreover,
if a student specializes in a particular area, then there should
be a professor in this area teaching at least one lecture for
this year. We thus have the following set � with a single s-t
tgd:

S(x1, x2, x3)→ (∃y1, y2, y3, y4, y5) L(y1, x2, y3) ∧
L(y4, x2, y5) ∧ P(y5, x3)

Clearly, the first atom in the conclusion may be deleted.
Now, consider the source instance I = {S(′bob′, 3, ′db′)},
and suppose that we want to evaluate the query

ans(x2) : −L(x1, x2, x3),¬P(x3, x4)

over the target instance, i.e., we want to check if, in some year,
there exists a lecture which has not been assigned to a profes-
sor. In [2,20], query answering via the “canonical universal
solution” (for details, see Sect. 2) is proposed. Depending on
whether the s-t tgd in� has been simplified or not, we either
get J = {L(u1, 3, u2), L(u3, 3, u4), P(u4,

′db′)} or the core
thereof, J ′ = {L(u1, 3, u2), P(u2,

′db′)} as the canonical
universal solution. In the first case, the query yields the result
{〈3〉} whereas, in the second case, we get ∅. 	

Similarly, a unique normal form of the s-t tgds is crucial
for the semantics of aggregate queries in data exchange,
whose investigation has been initiated recently by Afrati and

123

280 G. Gottlob et al.

Kolaitis [1]. Aggregate queries are of the form SELECT f
FROMR, where f is an aggregate operator min(R.A),
max(R.A), count(R.A), count(∗), sum(R.A), or avg
(R.A), and where R is a target relation symbol or, more
generally, a conjunctive query over the target schema and A
is an attribute of R. On the one hand, [1] defines an inter-
esting and non-trivial semantics of aggregate queries in data
exchange. On the other hand, it is shown that the most impor-
tant aggregate queries can be evaluated in polynomial time
(data complexity). In this paper, we shall show how aggre-
gate queries can benefit from our normalization of schema
mappings.

So far, we have only mentioned mappingsM = 〈S,T, �〉,
where � is a set of s-t tgds. In addition, � may contain con-
straints on the target instance alone. One of the most impor-
tant forms of target constraints are equality-generating target
dependencies (egds, for short), which can be considered as a
generalization of functional dependencies. Egds are formu-
las of the form ∀x (

ϕ(x)→ xi = x j
)

where ϕ is a CQ over
T and xi , x j are variables in x.

Example 5 We modify the setting from Examples 1 and 2.
Let M = 〈S,T, �〉with S = {C(·, ·, ·)} and T = {P(·, ·, ·)}
where C and P denote the relational schemas Course (title,

course-area, prof-area) and Prof(name, prof-area, course-area).
The P relation thus contains information on the area of the
professor as well as on the area(s) of the courses taught
by him/her. The set � of s-t tgds expresses the following
constraints: For every course, there exists a professor who
teaches courses in his/her own area of expertise and who
teaches courses with this combination of course and prof area.
Moreover, there exists a professor whose expertise matches
the area of the course and vice versa. We thus define � as a
mapping with the following two s-t tgds:

C(x1, x2, x3)→ (∃y1, y2) P(y1, y2, y2) ∧ P(y1, x2, x3)

C(x1, x2, x3)→ (∃y1)P(y1, x3, x2)

This set of dependencies is minimal. However, suppose that
we add the egd P(x1, x2, x3)→ x2 = x3, expressing that a
professor only teaches courses in his/her own area of exper-
tise. Then P(y1, y2, y2) can be eliminated from the conclu-
sion of the first s-t tgd. Moreover, the first and the second s-t
tgd imply each other. Hence, � can be replaced by either �′
or �′′ with

�′ = {C(x1, x2, x3)→ (∃y1) P(y1, x2, x3)} and

�′′ = {C(x1, x2, x3)→ (∃y1) P(y1, x3, x2)}.
	

Example 5 illustrates that, in the presence of target egds,
our rewrite rules for the s-t tgds-only case are not powerful
enough. To deal with target egds, we will introduce further
rewrite rules. In particular, one of these new rewrite rules will

result in the introduction of source egds to prevent situations
where two sets of s-t tgds only differ on source instances
which admit no target instance anyway. Indeed, in Exam-
ple 5, �′ and �′′ only differ if x2 = x3 holds. But this is
forbidden by the egd. Hence, � should be replaced by �∗
with

�∗ = {C(x1, x2, x3)→ x2 = x3,

C(x1, x2, x2)→ (∃y1) P(y1, x2, x2)}.
In summary, we shall be able to prove that our extended set of
rewrite rules again leads to a normal form, which is unique up
to variable renaming. The main ingredients of our normal-
ization and optimization are the splitting and simplification
of tgds. In the presence of target egds, several pitfalls will
have to be avoided when defining appropriate splitting and
simplification rules so as not to destroy the uniqueness of the
normal form.

Organization of the paper and summary of results In
Sect. 2, we recall some basic notions. A conclusion and an
outlook to future work are given in Sect. 6. The main results
of the paper are detailed in the Sections 3–5, namely:

• Optimization and normalization of sets of s-t tgds. In
Sect. 3, we give a formal definition of the above-
mentioned optimality criteria for sets of s-t tgds and we
present rewrite rules to transform any set of s-t tgds into an
optimal one (i.e., minimal w.r.t. to these criteria). We shall
also show that the normal form obtained by our rewrite
rules is unique up to variable renaming. Moreover, we
show that if the length of each s-t tgd is bounded by a
constant, then this normal form can be computed in poly-
nomial time.

• Extension to target egds. In Sect. 4, the rewrite rule system
for s-t tgds is then extended to schema mappings com-
prising target egds. Several non-trivial extensions (like
the introduction of source egds) are required to arrive at
a unique normal form again. The extended splitting and
simplification rules will have to be defined very carefully
so as not destroy this uniqueness.

• Semantics of aggregate operators. In Sect. 5, we discuss
in detail the application of our normalization of schema
mappings to the definition of a unique semantics of aggre-
gate operators in data exchange.
Some proof details will be omitted due to space limita-
tions. They can be found in the technical report [13].

2 Preliminaries

A schema R = {R1, . . . , Rn} is a set of relation symbols Ri

each of a fixed arity. An instance over a schema R consists

123

Normalization and optimization 281

of a relation for each relation symbol in R, s.t. both have the
same arity. We only consider finite instances here.

Tuples of the relations may contain two types of terms:
constants and variables. The latter are often also called
marked nulls or labeled nulls. Two labeled nulls are equal
if they have the same label. For every instance J , we write
dom(J), var(J), and Const(J) to denote the set of terms,
variables, and constants, respectively, of J . Clearly, dom(J)
= var(J) ∪ Const(J) and var(J) ∩ Const(J) = ∅. If we
have no particular instance J in mind, we write Const to
denote the set of all possible constants. We write x for a
tuple (x1, x2, . . . , xn). However, by slight abuse of notation,
we also refer to the set {x1, . . . , xn} as x. Hence, we may use
expressions like xi ∈ x or x ⊆ X , etc.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas
with no relation symbols in common. We call S the source
schema and T the target schema. We write 〈S,T〉 to denote
the schema {S1, . . . , Sn, T1, . . . , Tm}. Instances over S and
T are called source and target instances, respectively. If I is
a source instance and J a target instance, then their combi-
nation 〈I, J 〉 is an instance of the schema 〈S,T〉.
Homomorphisms and substitutions Let I, I ′ be instances.
A homomorphism h : I → I ′ is a mapping dom(I) →
dom(I ′), s.t. (1) whenever a fact R(x) ∈ I , then R(h(x)) ∈
I ′, and (2) for every constant c, h(c) = c. If such h exists, we
write I → I ′. Moreover, if I ↔ I ′ then we say that I and I ′
are homomorphically equivalent. In contrast, if I → I ′ but
not vice versa, we say that I is more general than I ′, and I ′
is more specific than I .

If h : I → I ′ is invertible, s.t. h−1 is a homomorphism
from I ′ to I , then h is called an isomorphism, denoted I ∼= I ′.
An endomorphism is a homomorphism I → I . An endomor-
phism is proper if it is not surjective (for finite instances, this
is equivalent to being not injective), i.e., if it reduces the
domain of I .

If I is an instance, and I ′ ⊆ I is such that I → I ′ holds
but for no other I ′′ ⊂ I ′ : I → I ′′ (that is, I ′ cannot be fur-
ther “shrunk” by a proper endomorphism), then I ′ is called
a core of I . The core is unique up to isomorphism. Hence,
we may speak about the core of I . Cores have the following
important property: for arbitrary instances J and J ′, J ↔ J ′
if core(J) ∼= core(J ′).

A substitution σ is a mapping which sends variables to
other domain elements (i.e., variables or constants). We write
σ = {x1 ← a1, . . . , xn ← an} if σ maps each xi to ai and
σ is the identity outside {x1, . . . , xn}. The application of a
substitution is usually denoted in post-fix notation, e.g., xσ
denotes the image of x under σ . For an expression ϕ(x),
which in the following will normally refer to a conjunc-
tive query with variables in x, we write ϕ(xσ) to denote the
result of replacing every occurrence of every variable x ∈ x
by xσ .

Schema mappings and data exchange A schema mapping
is given by a triple M = (S,T, �) where S is the source
schema, T is the target schema, and � is a set of dependen-
cies expressing the relationship between S and T and possibly
also local constraints on S and T. The data exchange problem
associated with M is the following: Given a (ground) source
instance I , find a target instance J , s.t. 〈I, J 〉 |� �. Such a
J is called a solution for I or, simply, a solution if I is clear
from the context. The set of all solutions for I under M is
denoted by SolM(I). If J ∈ SolM(I) is such that J → J ′
holds for any other solution J ′ ∈ SolM(I), then J is called a
universal solution. Since the universal solutions for a source
instance I are homomorphically equivalent, the core of the
universal solutions for I is unique up to isomorphism. It is
the smallest universal solution [11].

In the following, we will often identify a schema mapping
M = (S,T, �) with the set of dependencies �, without
explicitly mentioning the schemas, for the sake of brevity.

Equivalence of schema mappings Different notions of
equivalence of schema mappings have been recently pro-
posed by Fagin et al. [10]. In this paper, we will only consider
the strongest one, namely logical equivalence.

Definition 1 [10] Two schema mappings � and �′ over the
schema 〈S,T〉 are logically equivalent (denoted as � ≡ �′)
if, for every source instance I and target instance J , the
equivalence 〈I, J 〉 |� � ⇔ 〈I, J 〉 |� �′ holds. In this
case, the equality Sol�(I)= Sol�

′
(I) holds for every source

instance I .

Dependencies Embedded dependencies [8] over a relational
schema R are first-order formulas of the form

∀x (ϕ(x)→ ∃y ψ(x, y))

In case of tuple-generating dependencies (tgds), both ante-
cedent ϕ and conclusion ψ are conjunctive queries (CQs)
over the relation symbols from R such that all variables in x
actually do occur in ϕ(x). Equality-generating dependencies
(egds) are of the form

∀x (
ϕ(x)→ xi = x j

)

with xi , x j ∈ x. Throughout this paper, we shall omit the
universal quantifiers: By convention, all variables occurring
in the antecedent are universally quantified (over the entire
formula). In the context of data exchange, we are mainly deal-
ing with source-to-target dependencies consisting of tuple-
generating dependencies (or s-t tgds) over the schema 〈S,T〉
(the antecedent is a CQ over S, the conclusion over T) and
target dependencies over T. In the scope of this paper, target
dependencies are restricted to equality-generating dependen-
cies (referred to as “target egds”). Moreover, in Sect. 4, we

123

282 G. Gottlob et al.

shall also consider source dependencies consisting of egds
over S (referred to as “source egds”).

Database of a conjunctive query Given a conjunctive query
χ , we write At(χ) to denote the database comprising exactly
the set of atoms of χ . If the variables of χ are instantiated
with distinct fresh constants in At(χ), this database is called
frozen. However, unless otherwise specified, we assume that
At(χ) is not frozen and that the variables of χ are instan-
tiated with distinct labeled nulls in At(χ). If χ represents
an antecedent or conclusion of some dependency τ,At(χ) is
called the antecedent or, respectively, conclusion database
of τ .

Chase The data exchange problem can be solved by the chase
[4], a sequence of steps, each enforcing a single constraint
within some limited set of tuples. More precisely, let� con-
tains a tgd τ : ϕ(x)→ (∃y)ψ(x, y), s.t. I |� ϕ(a) for some
assignment a on x. Then, we extend I with facts correspond-
ing toψ(a, z), where the elements of z are fresh labeled nulls.
Note that this definition of the chase differs from the defini-
tion in [9], where no new facts are added if I � ∃yψ(a, y) is
already fulfilled. Omitting this check is referred to as oblivi-
ous [17] chase. It is the preferred version of chase if the result
of the chase should not depend on the order in which the tgds
are applied (see e.g., [1,2,20]).

Now suppose that� contains an egd ε : ϕ(x)→ xi = x j ,
s.t. I |� ϕ(a) for some assignment a on x. This egd enforces
the equality ai = a j . We thus choose a null a′ among {ai , a j }
and replace every occurrence of a′ in I by the other term;
if ai , a j ∈ Const(I) and ai = a j , the chase halts with fail-
ure. We write I� to denote the result of chasing I with the
dependencies �.

Consider an arbitrary schema mapping � = �st ∪ �t

where�st is a set of source-to-target tgds and�t is a set of tar-
get egds. Then, the solution to a source instance I can be com-
puted as follows: We start off with the instance 〈I,∅〉, i.e., the
source instance is I and the target instance is initially empty.
Chasing 〈I,∅〉with�st yields the instance 〈I, J 〉, where J is
called the preuniversal instance. This chase always succeeds
since �st contains no egds. Then, J is chased with �t . This
chase may fail on an attempt to unify distinct constants. If the
chase succeeds, we end up with U = J�t , which is referred
to as the canonical universal solution CanSol�(I) or, simply
CanSol(I). Both J and U can be computed in polynomial
time w.r.t. the size of the source instance [9].

3 Normalization of s-t tgds

In this section, we investigate ways of optimizing sets of s-t
tgds. In the first place, we thus formulate some natural opti-
mality criteria. The following parameters of a set of s-t tgds
will be needed in the definition of such criteria:

Definition 2 Let ϒ be a set of s-t tgds. Then we define:

– |ϒ | denotes the number of s-t tgds in ϒ .
– AntSize(ϒ) = �{|At(ϕ(x))| : ϕ(x)→ ∃y ψ(x, y) is an

s-t tgd inϒ}, i.e., AntSize(ϒ) is the total number of atoms
in all antecedents of tgds in ϒ .

– ConSize(ϒ) = �{|At(ψ(x, y))| : ϕ(x)→ ∃yψ(x, y) is
an s-t tgd in ϒ}, i.e., ConSize(ϒ) is the total number of
atoms in all conclusions of tgds in ϒ .

– VarSize(ϒ) = �{|y | : ϕ(x)→ ∃y ψ(x, y) is in ϒ}, i.e.,
VarSize(ϒ) is the total number of existentially quantified
variables in all conclusions of tgds in ϒ .

We would naturally like to transform any set of s-t tgds into an
equivalent one where all the above parameters are minimal.
Recall however our discussion on the splitting of s-t tgds from
Example 3. As we pointed out there, the splitting of s-t tgds
is comparable to normal form decomposition of relational
schemas. It should clearly be applied in order to avoid anom-
alies like the introduction of obviously irrelevant atoms in the
canonical universal solution as we saw in Example 3, where
the set � (with two split s-t tgds) was certainly preferable to
�′ even though |�′| < |�| and AntSize(�′) < AntSize(�)
hold. Note that in Example 3, the equality ConSize(�′) =
ConSize(�) holds. Intuitively, the effect of splitting is that
the atoms in the conclusion of some s-t tgd are distributed
over several strictly smaller s-t tgds. Thus, our goal should be
to find an optimal set of s-t tgds (that is, a set where the above-
mentioned parameters are minimal) among those sets of s-t
tgds for which no further splitting is possible. We now make
precise what it means that “no further splitting” is possible
and formally defines optimality of a set of s-t tgds.

Definition 3 Let� be a set of s-t tgds. We say that� is split-
reduced if there exists no�′ equivalent to�, s.t. |�′| > |�|
but ConSize(�′) = ConSize(�).

Definition 4 Let � be a set of s-t tgds. We say that � is
optimal if it is split-reduced and if each of the parameters
|�|,AntSize(�),ConSize(�), and VarSize(�) is minimal
among all split-reduced sets equivalent to �.

Of course, given an arbitrary set � of s-t tgds, it is a pri-
ori not clear that an optimal set �′ equivalent to � exists,
since it might well be the case that some�′ minimizes some
of the parameters, while another set �′′ minimizes the other
parameters. The goal of this section is to show that optimality
in the above sense can always be achieved and to construct
an algorithm, which transforms any set � of s-t tgds into an
equivalent optimal one. To this end, we introduce a rewrite
system that consists of two kinds of rewrite rules: rules that
simplify each s-t tgd individually and rules that are applied
to the entire set of s-t tgds. The following example illustrates
several kinds of redundancy that a single s-t tgd may contain
(and which may be eliminated with our rewrite rules).

123

Normalization and optimization 283

Example 6 Consider the following dependency:

τ : S(x1, x3) ∧ S(x1, x2)→ (∃y1, y2, y3, y4, y5)

P(x1, y2, y1) ∧ R(y1, y3, x2) ∧ R(2, y3, x2)

∧ P(x1, y4, 2) ∧ P(x1, y4, y5) ∧ Q(y4, x3)

Clearly, τ is equivalent to the set {τ1, τ2} of s-t tgds:

τ1 : S(x1, x3) ∧ S(x1, x2)→ (∃y1, y2, y3)

P(x1, y2, y1) ∧ R(y1, y3, x2) ∧ R(2, y3, x2)

τ2 : S(x1, x3) ∧ S(x1, x2)→ (∃y4, y5)

P(x1, y4, y5) ∧ P(x1, y4, 2) ∧ Q(y4, x3)

Now the antecedents of τ1 and τ2 can be simplified:

τ ′1 : S(x1, x2)→ (∃y1, y2, y3)

P(x1, y2, y1) ∧ R(y1, y3, x2) ∧ R(2, y3, x2)

τ ′2 : S(x1, x3)→ (∃y4, y5)

P(x1, y4, y5) ∧ P(x1, y4, 2) ∧ Q(y4, x3)

Finally, we may also simplify the conclusion of τ ′2:

τ ′′2 : S(x1, x3)→ (∃y4)P(x1, y4, 2) ∧ Q(y4, x3)

In total, τ is equivalent to {τ ′1, τ ′′2 }. 	

For the simplifications illustrated in Example 6, we define
the rewrite rules 1–3 in Fig. 1. Rules 1 and 2 replace an s-t tgd
τ by a simpler one (i.e., with fewer atoms) τ ′, while Rules
3 replaces τ by a set {τ1, . . . , τn} of simpler s-t tgds. These
rules make use of the following definitions of the core and
the components of CQs.

Fig. 1 Redundancy elimination from a set of s-t tgds

Definition 5 Let χ(u, v) be a CQ with variables in u ∪ v
and let A denote the structure consisting of the atoms
At(χ(u, v)), s.t. the variables u are considered as constants
and the variables v as labeled nulls. Let A′ denote the core
of A with A′ ⊆ A, i.e., there exists a substitution σ : v →
Const∪u ∪v s.t. At(χ(u, v σ)) = A′ ⊆ At(χ(u, v)). Then,
we define the core of χ(u, v) as the CQ χ(u, vσ).

Definition 6 Let χ(u, v) be a CQ with variables in u ∪ v.
We set up the dual graph G(τ) as follows: The atoms of
χ(u, v) are the vertices of G(τ). Two vertices are connected
if the corresponding atoms have at least one variable from v
in common. Let {C1, . . . ,Cn} denote the connected compo-
nents of G(τ). Moreover, for every i ∈ {1, . . . , n}, let vi with
∅ ⊆ vi ⊆ v denote those variables from v, which actually
occur in Ci and let χi (u, vi) denote the CQ consisting of the
atoms in Ci . Then we define the components of χ(u, v) as
the set {χ1(u, v1), . . . , χn(u, vn)}.
The splitting rule (i.e., Rule 3 in Fig. 1) was already
applied in Example 3. Rule 2 involving core computation
of the antecedent was applied in Example 1, when we
reduced L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P(x5, x6) to its core
L(x4, 3, x5)∧P(x5, x6). Likewise, in Example 6, the simpli-
fication of τ1 and τ2 to τ ′1 and τ ′2 is due to Rule 2. In a similar
way, Rule 1 involving core computation of the conclusion
allowed us to reduce L(y1, y2, y3)∧L(x1, 3, y4)∧P(y4, x2)

in Example 2 to L(x1, 3, y4)∧P(y4, x2). In Example 6, Rule
1 was applied when we replaced τ ′2 by τ ′′2 .

The following example illustrates that additional rules are
required in order to remove an s-t tgd or a part of an s-t tgd
whose redundancy is due to the presence of other s-t tgds.

Example 7 Consider the set � = {τ ′1, τ ′′2 , τ3}, where τ ′1 and
τ ′′2 are the s-t tgds resulting from the simplification steps in
Example 6 and τ3 is given below:

τ ′1 : S(x1, x2)→ (∃y1, y2, y3)

P(x1, y2, y1) ∧ R(y1, y3, x2) ∧ R(2, y3, x2)

τ ′′2 : S(x1, x3)→ (∃y4)P(x1, y4, 2) ∧ Q(y4, x3)

τ3 : S(2, x)→ (∃y)R(2, y, x)

The tgd τ3 generates only a part of the atoms that τ ′1 does
and fires in strictly fewer cases than τ ′1. Hence, τ3 may be
deleted. Moreover, considering the combined effect of the
rules τ ′1 and τ ′′2 , which fire on exactly the same tuples, and a
substitution {y1 ← 2, y2 ← y4}, we notice that the first two
atoms in the conclusion of τ ′1 are in fact redundant, and it is
possible to reduce τ ′1 to τ ′′1 : S(x1, x2)→ (∃y3)R(2, y3, x2).

In total, � may be replaced by �′ = {τ ′′1 , τ ′′2 }. 	

Rules 4 and 5 in Fig. 1 allow us to eliminate such redun-

dancies from a set � of s-t tgds: By Rule 4, we may delete
a s-t tgd τ from �, if τ is implied by the others, like τ3

in Example 7. Rule 5 allows us to replace a rule τ by a

123

284 G. Gottlob et al.

Fig. 2 Tgd optimization. Rectangles mark eliminated atoms, arrows
show justifications for elimination

strictly smaller rule (with fewer atoms in the conclusion) if τ
is implied by τ ′ together with the remaining s-t tgds in �
(cf. the replacement of τ ′1 with τ ′′1 in Example 7 above).
Figure 2 illustrates the elimination of redundant atoms via
Rules 1, 2, 4, and 5 in a set {τ1, τ

′
2, τ3} of tgds from

Examples 6 and 7.
In principle, the implication of a tgd by a set of dependen-

cies can be tested by a procedural criterion based on the chase
[4]. For our purposes, the following declarative criterion is
more convenient.

Lemma 1 Consider a s-t tgd τ : ϕ(x)→ (∃y)ψ(x, y) and
a set � of s-t tgds. Then, � |� τ holds if there exist (not
necessarily distinct) s-t tgds τ1, . . . , τk in �, such that all
s-t tgds τ, τ1, . . . , τk are pairwise variable disjoint and the
following conditions hold:

(a) For every i ∈ {1, . . . , k}, there exists a substitu-
tionλi : xi → Const ∪ x, s.t. At(ϕi (xiλi)) ⊆ At(ϕ(x)).

(b) A substitution μ : y→ Const ∪ x ∪⋃k
i=1 yi exists, s.t.

At(ψ(x, yμ)) ⊆⋃k
i=1 At(ψi (xiλi , yi)).

Proof For the “⇒”-direction, consider an arbitrary pair
〈S, T 〉 of source and target instance, s.t. 〈S, T 〉 |� �. It
is easy to show that by conditions (a) and (b), then also
〈S, T 〉 |� τ holds. For the “⇐”-direction, we take the source
instance S = At(ϕ(x)), where we consider the variables x as
constants. Moreover, let T denote the target instance which
results from the oblivious chase of S with �. Let τ1, . . . , τk

denote the (not necessarily distinct) s-t tgds whose anteced-
ent can be mapped into S via substitutions λ1, . . . , λk . These
substitutions satisfy the condition (a). By 〈S, T 〉 |� � and
� |� τ , we get the desired substitution μ for condition (b).

	

Note that Rule 5 generalizes Rule 1 and, in principle, also

Rule 4. Indeed, if we restrict � in Rule 5 to the singleton
� = {τ }, then the replacement of τ by τ ′ means that we

reduce ψ(x, y) to its core. Moreover, Rule 5 allows us to
eliminate all atoms from the conclusion of τ if τ may be
deleted via Rule 4. Clearly, the deletion of the conclusion
of τ essentially comes down to the deletion of τ itself. The
correctness of Rules 1–5 is easily established.

Lemma 2 The Rules 1–5 in Fig. 1 are correct, i.e.: Let� be
a set of s-t tgds and τ ∈ �. Suppose that � is transformed
into �′ by applying one of the Rules 1–5 to τ , that is:

– τ is replaced by a single s-t tgd τ ′ (via Rule 1,2,5),
– τ is replaced by s-t tgds τ1, . . . , τn (via Rule 3),
– or τ is deleted (via Rule 4).

Then � and �′ are equivalent.

The following notion of a “proper instance” of an s-t tgd
plays an important role for proving that our Rules 1–5 lead
to a unique normal form. A proper instance of an s-t tgd τ
is obtained from τ by eliminating at least one existentially
quantified variable in the conclusion of τ , while keeping the
antecedent unchanged.

Definition 7 Let τ : ϕ(x)→ (∃y)ψ(x, y) be an s-t tgd. We
call an s-t tgd τ ′ a proper instance of τ , if there exists a strict
subset y ′ ⊂ y and a substitution σ : y → Const ∪ x ∪ y ′,
such that τ ′ is of the form τ ′ : ϕ(x)→ (∃y ′)ψ(x, yσ).

Example 8 In the following three tgds, each next tgd is a
proper instance of the previous ones:

τ1 : S(x1, x2)→ (∃y1, y2)Q(x1, y1, y2)

τ2 : S(x1, x2)→ (∃y1)Q(x1, y1, y1)

τ3 : S(x1, x2)→ Q(x1, x2, x2)

Moreover, observe that τ2 |� τ1 and τ3 |� τ2 holds. 	

The importance of “proper instances” to our investigations

comes from the following properties:

Lemma 3 Let τ and τ ′ be s-t tgds, s.t. τ ′ is a proper instance
of τ . Then the following properties hold:

(1) τ ′ |� τ .
(2) Suppose that τ is reduced with respect to Rule 1. Then

τ |� τ ′.

Proof (Sketch) The proof of the first claim is easy. For the
second one, suppose that τ |� τ ′ holds. We have to show
that then Rule 1 is applicable to τ . Let 〈S, T 〉 denote a pair
of source and target instance with S = At(ϕ(x)) and T =
At(ψ(x, y)). The variables in x are thus considered as con-
stants, while y are labeled nulls. Clearly, 〈S, T 〉 |� τ and S |�
ϕ(x). Thus, by the assumption τ |� τ ′, also T |� ψ(x, yσ)
holds, i.e., there exists a substitution μ : y ′ → dom(T) such

123

Normalization and optimization 285

that At(ψ(x, yσμ)) ⊆ T . Hence, also the following inclu-
sion holds: At(ψ(x, yσμ)) ⊆ At(ψ(x, y)). Note that y ′ =
yσ ⊂ y. Hence, also At(ψ(x, yσμ)) ⊂ At(ψ(x, y)). But
then At(ψ(x, y)) is not a core and, therefore, Rule 1 is appli-
cable to τ. 	

Lemma 4 Let τ be an s-t tgd reduced w.r.t. the Rules 1 and 3
and let � be a set of s-t tgds. If � |� τ , then one of the fol-
lowing two conditions is fulfilled: Either

– there exists a single s-t tgd τ0 ∈ �, s.t. τ0 |� τ , or
– there exists a proper instance τ ′ of τ , s.t. � |� τ ′.

Proof Let {τ1, . . . , τk} ⊆ � \ {τ } with {τ1, . . . , τk} |� τ .
Suppose that k is minimal with this property and that k ≥
2. We show that then {τ1, . . . , τk} |� τ ′ holds for some
proper instance τ ′ of τ . For i ∈ {1, . . . , k}, let τ ′i s be pair-
wise variable disjoint and have the form τi : ϕi (xi) →
(∃yi)ψi (xi , yi). By Lemma 1 and the definition of Rule 4,
the τ ′i s fulfill the following properties:

(a) For every i ∈ {1, . . . , k}, there exists a substitution
λi : xi → Const ∪ x, s.t. At(ϕi (xiλi)) ⊆ At(ϕ(x)).

(b) A substitution μ : y→ Const ∪ x ∪⋃k
i=1 yi exists s.t.

At(ψ(x, yμ)) ⊆⋃k
i=1 At(ψi (xiλi , yi)).

Let At(ψ(x, y)) = {A1, . . . , An}. Clearly, n ≥ k ≥ 2.
Suppose that {A1μ, . . . , Aαμ} ⊆ At(ψ1(x1λ1, y1)) while
{Aα+1μ, . . . , Anμ} ⊆ ⋃k

i=2 At(ψi (xiλi , yi)). By assump-
tion, τ is reduced w.r.t. Rule 3, i.e., the conclusion of τ
either consists of a single atom without variables from y or
of atoms forming a single connected component of the dual
graph G(τ). By n ≥ k ≥ 2, the former case can be excluded.
Hence, the atoms in {A1, . . . , Aα} and {Aα+1, . . . , An} share
at least one variable y ∈ y, i.e., y occurs in some atom Ai with
i ∈ {1, . . . , α} and in some atom A j with j ∈ {α+1, . . . , n}.
Let � = 1 denote the index, s.t. A jμ ∈ At(ψ�(x�λ�, y�)).
In total, we thus have Aiμ ∈ At(ψ1(x1λ1, y1)) and, there-
fore, yμ ∈ Const ∪ x ∪ y1. On the other hand, A jμ ∈
At(ψ�(x�λ�, y�)) and, therefore, yμ ∈ Const ∪ x ∪ y�. By
assumption, y1 and y� are disjoint. Thus, yμ ∈ Const ∪ x.

We construct the desired proper instance τ ′ of τ as fol-
lows: Let y ′ := y \ {y} and define the substitution σ : y →
Const ∪ x ∪ y ′, s.t. yσ = yμ and σ maps all other variables
in y onto themselves. Then, we have σμ = μ, i.e., for every
yi ∈ y, yiσμ = yiμ. Clearly, {τ1, . . . , τk} |� τμ and, there-
fore, also {τ1, . . . , τk} |� τσ holds. But then τ ′ is the desired
proper instance of τ. 	

Lemma 5 Suppose that an s-t tgd τ ∈ � is reduced w.r.t.
Rules 1 and 3 and that τ cannot be deleted via Rule 4. If there
exists a proper instance τ ′ of τ , s.t.� |� τ ′ holds, then there
exists an s-t tgd τ ′′, s.t. τ may be replaced by τ ′′ via Rule 5.

Proof Let τ ′ : ϕ(x) → (∃y ′)ψ ′(x, y ′) and suppose that
� |� τ ′ holds. Then there exist s-t tgds τ1, . . . , τk in �
of the form τi : ϕi (xi)→ (∃yi)ψi (xi , yi), s.t. the conditions
(a) and (b) of Lemma 1 are fulfilled, i.e.:

(a) For every i ∈ {1, . . . , k}, there exists a substitution
λi : xi → Const ∪ x, s.t. At(ϕi (xiλi)) ⊆ At(ϕ(x)).

(b) There exists a substitutionμ : y→ Const∪x∪⋃k
i=1 yi ,

s.t. At(ψ ′(x, y ′μ)) ⊆⋃k
i=1 At(ψi (xiλi , yi)).

Let τ : ϕ(x)→ (∃y)ψ(x, y). We claim that at least one of
the τi coincides with τ (up to variable renaming). Suppose to
the contrary that τi ∈ � \ {τ } holds for every i ∈ {1, . . . , k}.
Then, the above conditions (a) and (b) imply that�\{τ } |� τ ′
holds by Lemma 1. Moreover, τ ′ |� τ holds by Lemma 3,
part (1). Thus, � \ {τ } |� τ and τ could be deleted by Rule
4, which is a contradiction.

Let I = {i | 1 ≤ i ≤ k, s.t. τi is obtained from τ via var-
iable renaming}. We define the CQ ψ ′′(x, y ′′) of the s-t tgd
τ ′′ : ϕ(x) → (∃y ′′)ψ ′′(x, y ′′) as follows: = {A(x, y) |
A(x, y) ∈ At(ψ(x, y)) and ∃i , s.t. i ∈ I and A(xλi , y) ∈
At(ψ ′(x, y ′μ)) ∩ At(ψi (xiλi , yi))}.
Moreover, we set ψ ′′(x, y ′′) =∧

A(x,y)∈ A(x, y).
Clearly, (� \ {τ }) ∪ {τ ′′} |� τ ′ by Lemma 1. Thus, also
(� \ {τ }) ∪ {τ ′′} |� τ , by Lemma 3, part (1). We claim that
At(ψ ′′(x, y ′′)) ⊂ At(ψ(x, y)) holds. Suppose to the con-
trary that At(ψ ′′(x, y ′′)) = At(ψ(x, y)). Then, by the above
definition of and by Lemma 1, τ |� τ ′ would hold. By
Lemma 3, part (2), this implies that τ is not reduced w.r.t.
Rule 1, which is a contradiction. Hence, τ ′′ is indeed the
desired s-t tgd, s.t. τ may be replaced by τ ′′ via Rule 5. 	

We now define a normal form of s-t tgds via the rewrite
rules of this section. We will then show that this normal form
is unique up to isomorphism in the sense defined below.

Definition 8 Let� be a set of s-t tgds and let�′ be the result
of applying the Rules 1–5 of Fig. 1 exhaustively to �. Then
�′ is the normal form of �.

Definition 9 Let τ1 : ϕ1(x1) → (∃y1)ψ1(x1, y1) and τ2 :
ϕ2(x2)→ (∃y2)ψ2(x2, y2) be two tgds. We say that τ1 and
τ2 are isomorphic if τ2 is obtained from τ1 via variable rena-
mings η : x1 → x2 and ϑ : y1 → y2.

Let�1 and�2 be two sets of tgds. We say that�1 and�2

are isomorphic if |�1| = |�2|, every τ1 ∈ �1 is isomorphic
to precisely one τ2 ∈ �2 and every τ2 ∈ �2 is isomorphic to
precisely one τ1 ∈ �1.

We start by showing for two single s-t tgds τ1 and τ2 that
logical equivalence and isomorphism coincide, provided that
the s-t tgds are reduced via our rewrite rules. This result will
then be extended to sets �1 and �2 of s-t tgds.

123

286 G. Gottlob et al.

Lemma 6 Let τ1 and τ2 be two s-t tgds and suppose that
τ1 and τ2 are reduced w.r.t. Rules 1–3. Then τ1 and τ2 are
isomorphic, iff τ1 and τ2 are equivalent.

Proof (Sketch) The “⇒”-direction follows immediately from
Lemma 1. For the “⇐”-direction, let τ1 and τ2 be equiv-
alent s-t tgds with τ1 : ϕ1(x1, x2) → (∃y)ψ1(x1, y) and
τ2 : ϕ2(u1,u2)→ (∃v)ψ(u1, v).

By Lemma 1, there exist substitutions

λ and ρ, s.t.

λ : x1 ∪ x2 → Const ∪ u1 ∪ u2, and

ρ : u1 ∪ u2 → Const ∪ x1 ∪ x2, such that

At(ϕ1(x1λ, x2λ)) ⊆ At(ϕ2(u1,u2))and

At(ϕ2(u1ρ,u2ρ)) ⊆ At(ϕ1(x1, x2)).

By exploiting the equivalence of τ1 and τ2 and the fact that
these s-t tgds are reduced w.r.t. Rule 2, we can show that the
antecedents of τ1 and τ2 are isomorphic (i.e., the above inclu-
sions are in fact equalities). Moreover, by exploiting that the
s-t tgds are reduced w.r.t. Rule 1, we may conclude that τ1

and τ2 are isomorphic. 	

Theorem 1 Let �1 and �2 be equivalent sets of s-t tgds,
i.e., �1 |� �2 and �2 |� �1. Let �′1 and �′2 denote the
normal form of �1 and �2, respectively. Then �′1 and �′2
are isomorphic.

Proof Let �1 and �2 be equivalent. Moreover, let �′1 and
�′2 denote the normal form of �1 and �2, respectively. By
the correctness of our rewrite rules 1–5, of course, also �′1
and �′2 are equivalent.

We first show that every s-t tgd in �′1 is isomorphic to
some s-t tgd in �′2 and vice versa. Suppose to the contrary
that this is not the case. W.l.o.g., we assume that there exists a
τ ∈ �′1, which is not isomorphic to any s-t tgd in �′2. By the
equivalence of �′1 and �′2, the implication �′2 |� τ clearly
holds. By Lemma 4, either τ0 |� τ for a single s-t tgd τ0 ∈ �′2
or there exists a proper instance τ ′ of τ , s.t. �′2 |� τ ′.

We start by considering the case that τ0 |� τ for a single
s-t tgd τ0 ∈ �′2. By the equivalence of�′1 and�′2, the impli-
cation�′1 |� τ0 holds and we can again apply Lemma 4, i.e.,
either τ1 |� τ0 for a single s-t tgd τ1 ∈ �′1 or there exists a
proper instance τ ′0 of τ0, s.t.�′1 |� τ ′0. Again, we consider first
the case that a single s-t tgd is responsible for the implication.
Actually, if τ1 was identical to τ then we had the equivalence
τ1 |� τ and τ |� τ1. Since both τ and τ1 are reduced w.r.t.
Rules 1–3, this would mean (by Lemma 6) that τ1 and τ are
isomorphic. This contradicts our original assumption that τ
is not isomorphic to any s-t tgd in �′2. Hence, the case that
τ1 |� τ0 for a single s-t tgd τ1 ∈ �′1 means that τ1 is different
from τ . In total, we thus have τ1 |� τ0 and τ0 |� τ and,
therefore, τ1 |� τ for a s-t tgd τ1 ∈ �′1 \ {τ }. Hence, τ can
be deleted from�′1 via Rule 4, which contradicts the normal
form of �′1.

It thus remains to consider the cases that there exists a
proper instance τ ′ of τ , s.t. �′2 |� τ ′ or there exists a proper
instance τ ′0 of τ0, s.t. �′1 |� τ ′0. We only show that the first
one leads to a contradiction. The second case is symmet-
ric. So suppose that there exists a proper instance τ ′ of τ ,
s.t. �′2 |� τ ′. By the equivalence of �′1 and �′2, we have
�′1 |� �′2 and, therefore, also �′1 |� τ ′. But then τ can be
replaced in �′1 by τ ′ via Rule 5. Hence, by Lemma 5, τ can
be replaced in �′1 by some s-t tgd τ ′′ via Rule 5. But this
contradicts the assumption that �′1 is in normal form.

Hence, it is indeed the case that every s-t tgd in �′1 is iso-
morphic to some s-t tgd in �′2 and vice versa. We claim that
every s-t tgd in �′1 is isomorphic to precisely one s-t tgd in
�′2 and vice versa. Suppose to the contrary that there exists
a s-t tgd τ which is isomorphic to two s-t tgds τ1 and τ2 in
the other set. W.l.o.g., τ ∈ �′1 and τ1, τ2 ∈ �′2. Clearly, τ1

and τ2 are isomorphic since they are both isomorphic to τ .
Hence, τ1 |� τ2 and, therefore,�′2 \ {τ2} |� τ2, i.e., Rule 4 is
applicable to �′2, which contradicts the assumption that �′2
is in normal form. 	

We now consider the complexity of computing the normal
form of a set of s-t tgds. Of course, the application of any
of the Rules 1, 2, 4, and 5 is NP-hard, since they involve
CQ answering. However, below we show that if the length
of each s-t tgd (i.e., the number of atoms) is bounded by a
constant, then the normal form according to Definition 8 can
be obtained in polynomial time.

Note that a constant upper bound on the length of the s-t
tgds is a common restriction in data exchange since, oth-
erwise, even the most basic tasks like computing a target
instance fulfilling all s-t tgds would be intractable.

Theorem 2 Suppose that the length (i.e., the number of
atoms) of the s-t tgds under consideration is bounded by some
constant b. Then, there exists an algorithm which reduces an
arbitrary set� of s-t tgds to normal form in polynomial time
w.r.t. the total size ||�|| of (an appropriate representation
of) �.

Proof (Sketch) First, the total number of applications of each
rule is bounded by the total number of atoms in all s-t tgds
in �. Indeed, Rule 4 deletes an s-t tgd. The Rules 1, 2, and
5 delete at least one atom from an s-t tgd. Rule 3 splits the
conclusion of an s-t tgd in 2 or more parts. Hence, also the
total number of applications of Rule 3 is bounded by the total
number of atoms in�. Finally, the application of each rule is
feasible in polynomial time since the most expensive part of
these rules is the CQ answering where the length of the CQs
is bounded by the number of atoms in a single s-t tgd. 	

The restriction on the number of atoms in each s-t tgd is
used in the above proof only in order to show that each rule
application is feasible in polynomial time. The argument that

123

Normalization and optimization 287

the total number of rule applications is bounded by the total
number of atoms in all s-t tgds in � applies to any set � of
s-t tgds. We thus get:

Corollary 1 The rewrite rule system consisting of
Rules 1–5 is terminating, i.e., Given an arbitrary set � of
s-t tgds, the non-deterministic, exhaustive application of the
Rules 1–5 terminates.

It can be shown that the unique normal form produced by
our rewrite rules is indeed optimal.

Theorem 3 Let � be a set of s-t tgds in normal form. Then
� is optimal according to Definition 4.

Proof The proof proceeds in three stages:

(1) � is split-reduced. Suppose to the contrary that it is not.
Then, there exists a set �′ with � ≡ �′, |�| < |�′|
and ConSize(�) = ConSize(�′). Let �∗ denote the
result of exhaustively applying our rewrite rules to �′.
By Theorem 1, � and �∗ are isomorphic. Hence, we
have ConSize(�) = ConSize(�∗) and |�| = |�∗|.
An inspection of the Rules 1–5 reveals that they may
possibly decrement the value of ConSize() (by either
deleting an atom in the conclusion or deleting an
entire s-t tgd) but they never increment the value of
ConSize(). By ConSize(�) = ConSize(�′) together
with ConSize(�) = ConSize(�∗), we immediately
have ConSize(�′) = ConSize(�∗). Hence, when trans-
forming �′ into �∗, we never decrement ConSize()
and, thus, we never delete an s-t tgd. But then |�′| =
|�∗| and, therefore, |�′| = |�|, which contradicts the
assumption that |�| < |�′| holds.

(2) ConSize(�) and VarSize(�) are minimal. It is easy to
verify that by no application of any of the Rules 1–5, the
parameters ConSize() or VarSize() can increase, i.e., if
a set ϒ of s-t tgds is obtained from some set ϒ ′ by an
application of one of the Rules 1–5, then ConSize(ϒ) ≤
ConSize(ϒ ′) and VarSize(ϒ) ≤ VarSize(ϒ ′).
Now let �′ be a set of s-t tgds equivalent to �, and
let �∗ denote the result of exhaustively applying our
rewrite rules to �′. By Theorem 1, � and �∗ are
isomorphic. Hence, we have the following relations:
ConSize(�) = ConSize(�∗) ≤ ConSize(�′) and also
VarSize(�) = VarSize(�∗) ≤ VarSize(�′).

(3) |�| and AntSize(�) are minimal. Let �′ be an arbi-
trary split-reduced set of s-t tgds equivalent to �. We
first show that |�| ≤ |�′|. Suppose to the contrary
that |�| > |�′|. We derive a contradiction by showing
that then �′ is not split-reduced. By (2), we know that
ConSize(�) ≤ ConSize(�′) holds. Analogously to the
proof of Lemma 7, we can transform � into �̄ with
ConSize(�̄) = ConSize(�′) simply by choosing an s-t

tgd τ in � and inflating its conclusion by sufficiently
many atoms of the form P(u1, . . . , uk). In total, we
then have �̄ ≡ �′,ConSize(�̄) = ConSize(�′), and
|�̄| > |�′|. Hence, �′ is not split-reduced.
It remains to prove AntSize(�) ≤ AntSize(�′) as the
final inequality. It is easy to verify that the parameter
AntSize() can never increase when one of the Rules 1,
2, 4, or 5 is applied. Moreover, by Lemma 7, we know
that Rule 3 is never applicable when we transform a
split-reduced set of s-t tgds into normal form. Now let
�∗ denote the normal form of �′. By Theorem 1, �
and �∗ are isomorphic. Hence, we have AntSize(�) =
AntSize(�∗) ≤ AntSize(�′). 	

An important motivation for seeking a conclusion-
minimal mapping� is to keep the redundancies in the target
instance small when using � in data exchange. The follow-
ing theorem establishes that our normal form indeed serves
this purpose.

Theorem 4 LetM = 〈S,T, �〉be a schema mapping where
� is a set of s-t tgds and � is in normal form. Moreover, let
�′ be another set of s-t tgds, s.t. � and �′ are equivalent,
and let I be an arbitrary source instance. Then, there exists a
variable renamingλ on the variables in the canonical univer-
sal solution CanSol�(I), s.t. CanSol�(I)λ ⊆ CanSol�

′
(I)

holds, i.e., the canonical instance produced by � is subset
minimal up to variable renaming.

Proof It is easy to verify that every application of any of the
Rules 1–5 either leaves the corresponding canonical univer-
sal solution unchanged or prevents the introduction of some
atoms in the canonical universal solution, i.e., let the set ϒ
of s-t tgds be obtained from some setϒ ′ by an application of
one of the Rules 1–5, then there exists a substitution μ, s.t.
CanSolϒ(I)μ ⊆ CanSolϒ

′
(I) holds. The theorem follows

by an easy induction argument. 	

We conclude this section by two remarks on the splitting
rule:

(1) The purpose of the splitting rule is to enable a fur-
ther simplification of the antecedents of the resulting s-t
tgds. Of course, it may happen that no further simpli-
fication is possible. As an example, consider a schema
mapping� = {R(x, y)∧R(y, z)→ S(x, z)∧T (z, x)}.
Splitting yields �′ = {R(x, y) ∧ R(y, z) → S(x, z);
R(x, y)∧ R(y, z)→ T (z, x)}, which cannot be further
simplified. In cases like this, one may either “undo” the
splitting or simply keep track of s-t tgds with identical
(possibly up to variable renaming) antecedents in order
to avoid multiple evaluation of the same antecedent by
the chase.

123

288 G. Gottlob et al.

(2) Definition 3 gives a “semantical” definition of “split
reduced” while the splitting rule is a “syntactical” cri-
terion. The following lemma establishes the close con-
nection between them.

Lemma 7 Let � be a split-reduced set of s-t tgds, and let
�∗ denote the normal form of �. Then, for every possible
sequence of rewrite rule applications, this normal form�∗ is
obtained from� without ever applying Rule 3 (i.e., splitting).

Proof Suppose to the contrary that there exists a sequence
of rewrite rule applications including the splitting rule on the
way from � to �∗. An inspection of the rewrite rules shows
that an application of Rule 4 (i.e., deletion of an s-t tgd) is
never required as a precondition in order to be able to apply
another rule. Hence, w.l.o.g., we may assume that Rule 4 is
applied at the very end of the transformation of � into �∗,
so that Rule 4 does not precede the application of any other
rule. Let�0, . . . , �n with�0 = � and�n = �∗ denote the
sequence of intermediate results along this transformation of
� into �∗. Then, there exists an i ∈ {1, . . . , n}, s.t. �i is
obtained from �i−1 by an application of Rule 3. Moreover,
suppose that this is the first application of Rule 3 along this
transformation of � into �∗. Since we are assuming that all
applications of Rule 4 occur at the very end of this transfor-
mation from � to �∗, we have |�i−1| = |�| and, therefore,
|�i | > |�|. An inspection of the Rules 1, 2, 3, and 5 reveals
that they may possibly decrement the value of ConSize()
(by deleting an atom in the conclusion via Rule 1 or 5) but
they never increment the value of ConSize(). Hence, we have
ConSize(�i) ≤ ConSize(�). We derive a contradiction by
constructing a set �′ equivalent to �i (and, hence, to �),
with ConSize(�′) = ConSize(�) and |�′| > |�|. In other
words, we show that � is not split-reduced.

Let τ with τ : ϕ(x)→ ∃y ψ(x, y) be an arbitrary s-t tgd
in �i and let P(z1, . . . , zk) with {z1, . . . , zk} ⊆ x ∪ y be
an atom in the conclusion of τ . Clearly, we may add atoms
of the form P(u1, . . . , uk) for fresh, existentially quantified
variables u1, . . . , uk to the conclusion without changing the
semantics of �. Indeed, any such atom could be removed
again by our Rule 1 (Core of the conclusion). Then, we trans-
form�i into�′ with ConSize(�′) = ConSize(�i) simply by
inflating the conclusion of τ in�i by sufficiently many atoms
of the form P(u1, . . . , uk). In total, we then have�′ ≡ �i ≡
�,ConSize(�′) = ConSize(�), and |�′| = |�i | > |�′|.
Hence,� is not split-reduced, which contradicts the assump-
tion of this lemma. 	

If a mapping � contains redundancies in the sense that
one of the Rules 1, 4, 5 is applicable, then the notion of
“split-reduced” according to Definition 3 and the non-appli-
cability do not necessarily coincide as the following example
illustrates. However, if Rules 1, 4, 5 are not applicable, then
Definition 3 is exactly captured by the splitting rule (Rule 3).

Example 9 Consider the set � = {τ } of s-t tgds with
τ : P(x1, x2)→ (∃y1, y2)R(x1, x2, y1) ∧ R(x1, y1, y2). On
the one hand, Rule 3 is not applicable because the conclusion
of τ consists of a single connected component.

On the other hand, τ may be also simplified (via Rule 1
or Rule 5) to τ ′ : P(x1, x2) → (∃y)R(x1, x2, y). Now let
�′ consist of two “copies” of τ ′, i.e., �′ = {τ ′, τ ′′} with
τ ′′ : P(z1, z2)→ (∃y)R(z1, z2, y). Then we have the equiv-
alence � ≡ �′. Moreover, |�′| > |�| and ConSize(�′) =
ConSize(�). Hence, � is not split-reduced in the sense of
Definition 3. 	

Lemma 8 Let � be a set of s-t tgds, s.t. � is reduced w.r.t.
Rules 1, 4, 5. Then the following equivalence holds:� is split-
reduced (according to Definition 3) iff Rule 3 (i.e., splitting)
is not applicable.

Proof If Rule 3 is applicable to �, then � can obviously
be transformed into an equivalent set �′ with |�′| > |�|
and ConSize(�′) = ConSize(�), i.e., � is not split-reduced
according to Definition 3.

Now suppose that the splitting rule is not applicable to�.
We have to show that then� is split-reduced. Suppose to the
contrary that it is not split-reduced, i.e., there exists an equiva-
lent set�′ with |�′| > |�| and ConSize(�′) = ConSize(�).
We derive a contradiction by exploiting Theorem 1 (i.e., the
uniqueness of the normal form according to Definition 8).

First, we observe that the normal form �∗ of � can be
obtained via Rule 2 only. Indeed, by assumption, none of
Rules 1, 3, 4, 5 is applicable to �. Hence, either � already
is in normal form (i.e., Rule 2 is not applicable either) or
� can be simplified via Rule 2. Clearly, an application of
Rule 2 does not enable the application of any of the other
rules. Hence,�∗ is obtained by iterated applications of Rule
2 only. Note that Rule 2 has no influence on the cardinality
and on the conclusion size of a mapping. Hence, we have
|�| = |�∗| and ConSize(�) = ConSize(�∗).

Second, let us transform �′ into normal form. By Theo-
rem 1, this normal form is unique up to isomorphism. Hence,
w.l.o.g., this normal form of�′ is�∗. As far as the cardinality
of the involved mappings is concerned, we have |�′| > |�|
and |�| = |�∗|. Hence, during the transformation of�′ into
|�∗|, eventually Rule 4 or 5 must be applied thus reduc-
ing the conclusion size. Hence, we have ConSize(�′) >
ConSize(�∗). But this is a contradiction to the above
equalities ConSize(�′) = ConSize(�) and ConSize(�) =
ConSize(�∗) 	

4 Extension to target Egds

We now extend our rewrite rule system to schema mappings
with both s-t tgds and target egds. Several additional con-
siderations and measures are required to arrive at a unique

123

Normalization and optimization 289

normal form and a basis for the s-t tgd optimization also in
this case. The outline of this section is as follows:

(1) We have already seen in Example 5 that the presence
of egds may have an effect on the equivalence between
two sets of s-t tgds. We shall, therefore, first present a
method of “propagating” the effects of the egds into the
s-t tgds.

(2) Splitting has played an important role in all our consid-
erations so far. It will turn out that splitting via Rule 3 as
in the tgd-only case is not powerful enough if egds are
present. We shall, therefore, present a generalization of
the notion of “split-reduced” and of the splitting rule to
the case when also egds are present. This will lead to
the notion of “egd-split-reduced” mappings.

(3) The intuition of “egd-split-reduced” mappings is that it
is not possible to generate the atoms in the conclusion
of some tgd by means of several tgds. The anteced-
ent may thus possibly be left unchanged. It can easily
be shown that, in general, there does not exist a unique
“egd-split-reduced” normal form. We, therefore, restrict
this notion to “antecedent-split-reduced” mappings, i.e.:
a tgd is replaced by new tgds only if the new tgds have
strictly smaller antecedent than the original one. With
this concept, we shall manage to prove that there always
exists a unique (up to isomorphism) normal form also
in the presence of egds.

(4) Finally, we leave aside the considerations on splitting
and concentrate on the optimization of the set of s-t tgds
according to the criteria of Sect. 3. We shall show that
grouping the s-t tgds by homomorphically equivalent
antecedents is the key to any optimization tasks in this
area.

(5) We also look at the operation opposite to splitting:
namely, merge of s-t tgds with homomorphically equiv-
alent antecedents. As we will show, unlike the s-t tgds
only case, in presence of target dependencies, the split-
ting of s-t tgds can cause an increase in the total number
of conclusion atoms. Hence, for some cases, the merge
operation can be a reasonable alternative. We will show,
however, that with respect to the unique normal form,
the “merged” form of the mappings is no more useful
than the “egd-split-reduced” form.

Propagating the effect of egds into s-t tgds An important
complication introduced by the egds has already been hinted
at in Sect. 1, namely the equivalence of two sets of s-t tgds
may be affected by the presence of egds:

Example 10 (Example 5 slightly extended).

�st = {C(x1, x2, x3)→
(∃y1, y2) P(y1, y2, y2) ∧ P(y1, x2, x3),

C(x1, x2, x3)→ (∃y1)P(y1, x3, x2),

C(x1, x2, x2)→ Q(x1)}
�′st = {C(x1, x2, x3)→ (∃y1) P(y1, x2, x3),

C(x1, x2, x3)→ Q(x1)}
�t = {P(x1, x2, x3)→ x2 = x3}
We have �st ∪�t ≡ �′st ∪�t . Moreover, both �st and �′st
are in normal form w.r.t. the Rules 1–5 from Sect.3. However,
�st ≡ �′st holds. 	

In contrast, the equivalence of two sets of target egds is
not influenced by the presence of s-t tgds, as the following
lemma shows.

Lemma 9 Suppose that � = �st ∪ �t and ϒ = ϒst ∪ ϒt

are two logically equivalent sets of s-t tgds and target egds.
Then, �t and ϒt are equivalent.

Proof W.l.o.g. assume that there exists an ε : ϕ(x) →
σ(x) ∈ ϒt s.t. �t |� ε. That is, the set L = At (ϕ(x))�t

of atoms of the antecedent of ε chased with �t does not
satisfy ε. However, it does satisfy �t . Now, consider the
pair of instances 〈∅, L〉. Since L |� �t , 〈∅, L〉 |� � and
〈∅, L〉 |� ϒ , which is a contradiction. 	

Recall that we are only considering logical equivalence of
dependencies here. The study of weaker notions of equiv-
alence [10] which only take attainable target instances into
account (which is not the case for L in the above proof) has
been initiated in [24].

In order to work with logical equivalence, we need a way
to test logical implication of mappings. However, since we
are now dealing with s-t tgds and egds, the declarative impli-
cation criterion from Lemma 1 no longer works. Instead,
we take the chase-based procedure by Beeri and Vardi [4],
applicable to any embedded dependencies that cannot cause
an infinite chase (which is clearly the case when all tgds are
s-t tgds).

Lemma 10 [4] Let� be a set of acyclic tgds and egds and let
δ be either a tgd or an egd. Letϕ(x)denote the antecedent of δ
and let T denote the database obtained by chasing At (ϕ(x))
with �. The variables in x are considered as labeled nulls.
Then, � |� δ if T |� δ holds.

Analogously to Rule 4 in Fig. 1, we also need a rule for delet-
ing redundant tgds in the presence of target egds. We shall
refer to this rule as the Rule E1 in the rewrite rule system to
be constructed in this section, which is specified in Fig. 4. As
in the tgd-only case, the primary goal of such a rewrite rule
system is the definition of a unique normal form of the s-t
tgds—but now taking also the target egds into account. The
first step toward this goal is to incorporate the effects of egds
into s-t tgds. As we have already pointed out in Sect. 1, this

123

290 G. Gottlob et al.

Fig. 3 Procedure propagate

may require the introduction of source egds. Since we only
consider source instances containing no variables (and not
the recent semantics of [12]), there will be no source chase.
The source egds are only meant to capture the failure condi-
tions, which cannot be detected otherwise after the rewriting
of the s-t tgds.

In Fig. 3, we present the procedure Propagate, which
incorporates, to some extent, the effect of the target egds into
the s-t tgds and thereby possibly generates source egds. The
idea of this procedure is that, for every s-t tgd τ , we iden-
tify all egds that will be applicable whenever τ is. Moreover,
we want that all equalities enforced by these egds should
already be enforced in the s-t tgd. Note that the chase in step
2.(b) is not the usual chase in data exchange. Here, in order
to propagate backwards the effect of the target egds, in step
2.(b), we chase the database I = At(ϕ(x))with labeled nulls,
which instantiate the variables from x. We assume that this
chase always succeeds: the only reason for failure on I could
be constants occurring in s-t tgds of �. If this is the case,
however, the chase is certain to fail on any source instance
satisfying the antecedent of τ . Thus, such a τ can be simply
replaced by a source egd of the form ϕ(x)→ ⊥ to rule out
instances on which τ would fire.

Example 11 We now apply the Propagate procedure to
� = �st ∪�t from Example 10. We start the loop in step 2
of the procedure with the first tgd of�st τ : C(x1, x2, x3)→
(∃y1, y2) P(y1, y2, y2) ∧ P(y1, x2, x3).

(a) I := {C(x1, x2, x3)}. (We now consider every xi as a
labeled null).

Fig. 4 Rewrite rules in the presence of egds

(b) Chasing 〈I,∅〉 with �st yields I ′ = {C(x1, x2, x3),

P(y′1, y′2, y′2), P(y′1, x2, x3), P(y′′1 , x3, x2)}. The egd
of �t is then applied, resulting in I ′′ = {C(x1,

x2, x2), P(y′1, y′2, y′2), P(y′1, x2, x2), P(y′′1 , x2, x2)}.
Note, that the egd application affected the “source”
atom C . Now, the third tgd in �st becomes applicable,
producing the ultimate instance 〈JS, JT 〉 = 〈I,∅〉� =
{C(x1, x2, x2), P(y′1, y′2, y′2), P(y′1, x2, x2), P(y′′1 ,
x2, x2), Q(x1)}.

(c) We got instances JS ={C(x1, x2, x2)} and JT ={P(y′1,
y′2, y′2), P(y′1, x2, x2), P(y′′1 , x2, x2), Q(x1)}. Core
computation of JT yields J ∗ = {P(y′1, x2, x2), Q(x1)}.
The s-t tgd τ is thus transformed into the following
τ ′ : C(x1, x2, x2)→ ∃y′1 P(y′1, x2, x2) ∧ Q(x1).

(d) We compute the substitution λ = {x3 ← x2}, which
maps the only atom C(x1, x2, x3) in ϕ(x) onto instance
JS = {C(x1, x2, x2)}. Hence, we get one source egd
C(x1, x2, x3)→ x2 = x3.

Finally, after the first iteration of the loop, we have �∗st =
{C(x1, x2, x2) → (∃y′1) P(y′1, x2, x2) ∧ Q(x1)} and �s =
{C(x1, x2, x3) → x2 = x3}. The remaining two iterations

123

Normalization and optimization 291

do not change the tgds of � (and thus also introduce no fur-
ther source egds). 	

The Propagate procedure never increases the size of the
antecedents of s-t tgds. Hence, the cost of the join opera-
tions when computing the canonical universal solution is not
affected. On the other hand, the size of the conclusions is
normally increased by this procedure. Note however that all
atoms thus accumulated in the conclusion of some s-t tgd τ
would be generated in a target instance anyway, whenever
τ fires. We will ultimately discuss the deletion of redundant
atoms from the conclusion of the s-t tgds (via a rule simi-
lar to Rule 5 from Fig. 1). However, for the time being, it
is convenient to have all these atoms present. This ensures
that dependencies resulting from the Propagate procedure
possess the following essential properties.

Lemma 11 Consider a set� = �st ∪�t of s-t tgds�st and
target egds �t . Moreover, let (�s, �

∗
st) denote the result of

Propagate(�st , �t). Then, the following conditions hold:

(1) For every s-t tgd τ ∈ �∗st , let Iτ be a database obtained
from the antecedent ϕ(x) of τ by instantiating the vari-
ables of x with fresh distinct constants. Then, the chase
of Iτ with �st ∪�t is successful.

(2) For every source instance I : if I |� �s then the chase
of I with �st ∪�t fails.

Proof (1) After the successful completion of the chase in
step 2.(b) of the Propagate procedure, all necessary
unifications in the antecedent relations have been per-
formed. Hence, the instance 〈At (ϕ(x)), At (ψ(x, y)) 〉
for an s-t tgd ϕ(x)→ (∃y)ψ(x, y) in�∗st satisfies both
�st and �t . Freezing the variables in At (ϕ(x)) (i.e.,
considering them as constants) makes no difference.

(2) An inspection of steps 2.(b) and (d) of the Propagate

procedure reveals that�s enforces only those equalities
which are implied by �st ∪ �t . Therefore, a violation
of �s means that also �st ∪�t is violated. 	

Lemma 12 The Propagate procedure is correct, i.e.: let
� = �st ∪�t and let (�s, �

∗
st) result from a call of Prop-

agate(�st , �t). Then � ≡ �′ for �′ = �s ∪�∗st ∪�t .

Proof The Propagate procedure leaves the set �t unchan-
ged. Moreover, Lemma 11, part (2), implies� |� �s . It thus
remains to show � |� τ ′ for every τ ′ ∈ �∗st and �′ |� τ for
every τ ∈ �st . These relationships are proved by inspecting
the loop in Propagate (in particular, step 2.b) and checking
that the implication criterion of [4] recalled in Lemma 10 is
fulfilled.
[� |� τ ′] Let τ ′ : ϕ′(x ′)→ (∃y ′)ψ ′(x ′, y ′) be obtained

by applying the loop of Propagate to some s-t tgd τ ∈ �st

with τ : ϕ(x) → (∃y)ψ(x, y). The unifications applied to

ϕ(x) in order to get ϕ′(x ′) are precisely the ones enforced by
the chase of At(ϕ(x)) with � in step 2.(b) of Propagate.
Therefore, chasing At(ϕ′(x′)) with � yields the same result
as the chase of I = At(ϕ(x))with�, namely I� . Hence, the
conjunction of the atoms in the set JT in step 2.(b) is satisfied
by I� . Now consider the conclusion ψ ′(x ′, y ′) of τ ′, which
is obtained via core computation from JT . ψ ′(x ′, y ′) is the
conjunction of a subset of JT , which is clearly also satisfied
by I� .
[�′ |� τ] Let τ : ϕ(x) → (∃y)ψ(x, y) be an s-t tgd in

�st and let τ ′ : ϕ′(x ′) → (∃y ′)ψ ′(x ′, y ′) denote the result
of applying the loop of Propagate to τ . Consider the (non-
frozen) antecedent database At(ϕ(x)) of τ . Chasing I with
�′ comes down to enforcing�s (which transforms At(ϕ(x))
into At(ϕ′(x ′))) followed by chasing At(ϕ′(x ′))with τ ′. The
result of this chase is I ∗ = At(ϕ′(x ′))∪At(ψ ′(x ′, y ′)). Note
that At(ψ ′(x ′, y ′)) is the core of the chase of At(ϕ(x)) with
�. Hence, I ∗ must satisfy τ , from which the claim follows,
by Lemma 10. 	

The following property is easy to see and will be helpful
subsequently.

Lemma 13 Let � = �st ∪�t , and let (�s, �
∗
st) denote the

result of Propagate(�st , �t). Moreover, let τ ∈ �∗st with
τ : ϕ(x) → ∃(y) ψ(x, y), and let I be a source instance
with I ⊆ At (ϕ(x)), such that elements of x are instantiated
with distinct fresh constants in I .

Then, the chase of I both with � = �st ∪ �t and with
�∗ = �s ∪ �∗st ∪ �t succeeds. Moreover, core(I�) =
core(I�

∗
).

Proof By condition (1) of Lemma 11, the chase with � and
with �∗ succeeds on the frozen antecedent database Iτ of τ .
Hence, the chase must also succeed for any subset of Iτ . The
equality core(J�) = core(J�

∗
) immediately follows from

the correctness of the Propagate procedure, see Lemma 12.
	

Splitting in the presence of egds The following example
illustrates that the splitting rule (i.e., Rule 3 in Fig. 1) does
not suffice to detect the possibility of splitting a “bigger” tgd
into smaller ones in the presence of target egds:

Example 12 Consider the following mapping � = {τ, ε}
τ : S(x, z1) ∧ S(x, z2)→ R(z1, y) ∧ Q(z2, y)

ε : R(x1, y1) ∧ Q(x2, y2)→ y1 = y2

It is easy to check that � is equivalent to the mapping �′ =
{τ1, τ2, ε} with the same target egd and two s-t tgds, each
containing only a subset of the antecedent and conclusion
atoms of τ :

τ1 : S(x, z1)→ R(z1, y)

τ2 : S(x, z2)→ Q(z2, y)

123

292 G. Gottlob et al.

The Rule 3 from Sect. 3 does not allow such a splitting,
however. 	

In some sense, the splitting in the above example still had
significant similarities with splitting in the absence of egds,
namely: The basic idea of distributing the conclusion atoms
over several dependencies is still present when target egds
have to be taken into account. However, we have to deal with
a significant extension here: Without egds, it would never be
possible to split the connected component (w.r.t. the existen-
tial variables) of the conclusion of a tgd. As we have seen
in the above example, egds may allow us to tear a connected
component apart. Moreover, splitting in the presence of egds
is not merely distributing atoms of the conclusion of some
dependency over several ones. The following example illus-
trates that we may also have to copy atoms in order to further
split the conclusion of a tgd.

Example 13 Consider the following mapping �

τ : S(x1, x2) ∧ S(x1, x3)→
R(x2, y) ∧ P(y, x2) ∧ Q(y, x3)

ε : R(x, y1) ∧ R(x, y2)→ y1 = y2

The s-t tgd τ can be rewritten in the following way:

τ1 : S(x1, x2) ∧ S(x1, x3)→ R(x2, y) ∧ Q(y, x3)

τ2 : S(x1, x2)→ R(x2, y) ∧ P(y, x2)

Both τ1 and τ2 must contain an R-atom.

We observe that the total number of atoms in all conclu-
sions in the resulting mapping in Example 13 has increased.
But compared with the original mapping τ , each conclusion
is strictly smaller than the original one. (i.e., is obtained by
deletion of at least one atom and possibly the renaming of
some variable occurrences). We thus generalize the notion of
split-reduced mappings from the s-t tgd-only case:

Definition 10 Let � = �st ∪ �t be a mapping. The tgd
τ : ϕ(x̄, z̄) → ψ(x̄, ȳ) ∈ �st is egd-split-reduced, if it is
not possible to replace it by a set of new s-t tgds τi with
antecedent ϕi and conclusion ψi , s.t. At(ϕi) ⊆ At(ϕ) and
|At (ψi)| < |At (ψ)|. �st is said to be egd-split-reduced if
each dependency in it is.

The above notion of egd-split-reduced mappings general-
izes the notion of split-reduced mappings from Definition 3 to
mappings with target egds. The connection between the two
notions of splitting is formalized by the following lemma:

Lemma 14 Let � = �st ∪ �t with �t = ∅ and suppose
that �st cannot be simplified by any of the Rules 1,4, and 5
from Fig. 1 (i.e., the rules which would reduce ConSize(�st)

are not applicable). Then the following equivalences hold:
�st is egd-split-reduced if�st is split-reduced if Rule 3 (i.e.,
splitting) cannot be applied.

Proof The second equivalence was already shown in Lemma
8. Below we show that�st is egd-split-reduced if Rule 3 (i.e.,
splitting) cannot be applied.

First, suppose that Rule 3 (i.e., splitting) actually can be
applied to �st . Then, some τ ∈ �st can be replaced by tgds
τ1, . . . , τn , s.t. the antecedent of each τi coincides with the
antecedent of τ and the conclusion of each τi is a proper
subset of the conclusion of τ . Hence, �st is not egd-split-
reduced.

Now suppose that �st is not egd-split-reduced. We have
to show that then Rule 3 can be applied. Suppose to the con-
trary that Rule 3 cannot be applied. We derive a contradiction
by showing that then one of the Rules 1, 4, 5 is applica-
ble to �: Since �st is not egd-split-reduced, there exists a
τ ∈ �st with antecedent ϕ which can be replaced by a set
of new tgds {τ1, . . . , τn}, s.t. for every i,At(ϕi) ⊆ At(ϕ)
and |At (ψi)| < |At (ψ)| hold, where ϕi and ψi , respec-
tively, denote the antecedent and conclusion of τ . Moreover,
� ≡ �′ holds with �′ = (� \ {τ }) ∪ {τ1, . . . , τn}. In par-
ticular, �′ |� τ . By Lemma 4, then either (1) �′ |� τ ′ holds
for some proper instance τ ′ of τ (see Definition 7) or (2) τ
is already implied by a single tgd σ ∈ �′.

In case (1), we clearly also have � |� τ ′ for the proper
instance τ ′ of τ . But then, by Lemma 5, Rule 5 is appli-
cable to τ , which is a contradiction. It remains to consider
case (2). Clearly, σ ∈ � \ {τ } since otherwise τ could be
deleted from � via Rule 4. So let σ = τ j for some j . We
thus have �̄ |� τ with �̄ = (� \ {τ }) ∪ τ j and, there-
fore, also �̄ ≡ �. Moreover, |At (ψ j)| < |At (ψ)| holds,
which implies ConSize(�̄) < ConSize(�). Now suppose
that we transform both � and �̄ into the unique (up to
isomorphism) normal form �∗ according to Definition 8.
By assumption, none of the Rules 1, 3, 4, and 5 is appli-
cable to �. Hence, by the same considerations as in the
proof of Lemma 8, �∗ is obtained by successive applica-
tions of Rule 2, which leaves the conclusions of the tgds
unchanged. Hence, we have ConSize(�∗) = ConSize(�).
On the other hand, if we transform �̄ into the normal form
�∗, then we never increase the conclusion size. Hence, from
the inequality ConSize(�̄) < ConSize(�), we may infer
ConSize(�∗) < ConSize(�), which contradicts the equal-
ity that we have just derived. 	

In Fig. 4 we present the Rule ES, whose exhaustive
application obviously transforms any mapping into an
egd-split-reduced one. Alas, the following example shows
that we cannot hope to get a unique egd-split-reduced map-
ping.

Example 14 Consider the schema mapping � consisting of
a single s-t tgd and a number of target egds:

S(1, x) ∧ S(1, 2) ∧ S(y, 2)→ T (x, y, z) ∧ P(x, z)

∧R(y, z) ∧ Q(z, v, w)

123

Normalization and optimization 293

T (x, y, z) ∧ P(x, z) ∧ Q(z, v, w)→ v = w
T (x, y, z) ∧ R(y, z) ∧ Q(z, v, w)→ v = w
T (x, y, z1) ∧ P(x, z2) ∧ Q(w, v, v)→ z1 = z2

T (x, y, z1) ∧ R(y, z2) ∧ Q(w, v, v)→ z1 = z2

This mapping is not in the egd-split-reduced form, since the
antecedent of the s-t tgd can be shrunk by extracting either the
P or the Q atom from the conclusion. �′st and �′′st are two
possible transformations of � into egd-split-reduced form
via the Rule ES.

�′st = {S(1, x) ∧ S(1, 2) ∧ S(y, 2)→ T (x, y, z) ∧
R(y, z) ∧ Q(z, v, w),

S(1, x) ∧ S(1, 2)→ P(x, z)} and

�′′st = {S(1, x) ∧ S(1, 2) ∧ S(y, 2)→ T (x, y, z) ∧
P(x, z) ∧ Q(z, v, w),

S(1, 2) ∧ S(y, 2)→ R(y, z)}
	

Clearly, the problem in Example 14 is not just due to the
definition of the Rule ES. Instead, it is an intrinsic problem
of the notion of egd-split-reduced mappings. Apparently, this
extent of splitting is too strong. We shall therefore relax the
notion of egd-split-reduced. This will be the topic of the next
paragraph.

Antecedent-split-reduced mappings In Example 14, we
observed that certain antecedent atoms may be freely dis-
tributed between several tgds, if the idea of splitting from
Sect. 3 is directly adopted in the setting with target con-
straints. Therefore, in order to arrive at an intuitive defi-
nition of a unique normal form, we shift our focus to the
antecedents:

Definition 11 Let � = �st ∪�t be a mapping. The s-t tgd
τ : ϕ(x̄, z̄) → ψ(x̄, ȳ) ∈ �st is antecedent-split-reduced,
if it is not possible to replace it with a set of new s-t tgds
τi each having strictly smaller antecedent, i.e., for the ante-
cedents ϕi , we get |At (ϕi)| < |At (ϕ)|. �st is said to be
antecedent-split-reduced if each dependency in it is.

In order to transform a mapping into an antecedent-split-
reduced one, we define the rule E2-eager in Fig. 4. It can
be shown that any normal form under a rule rewrite sys-
tem containing Rule E2-eager is antecedent-split-reduced
and vice versa. In this rule, we have to inspect all subsets
of the antecedent database of each tgd. Actually, we will
show that it suffices to check all subsets ϕi of an antecedent
ϕ(x), such that ϕi is a proper endomorphic image of ϕ(x).
This is what the Rule E2 in Fig. 4 does. Clearly, the num-
ber of endomorphic images is, in general, far smaller than
the number of all subsets. In particular, we never have to
check antecedents smaller than the core of the already pres-
ent antecedents (here, we mean the core of the conjunctive

query—without distinguishing two groups of variables as
we did in the definition of the Rules 1 and 2). The follow-
ing theorem shows that both the rule E2-eager and the rule
E2 exactly capture the notion of antecedent-split-reduced
mappings.

Theorem 5 Let� = �st∪�t be a schema mapping in which
no tgd can be deleted via the Rule E1. Then, the following
properties are equivalent:

1. � is antecedent-split-reduced.
2. � is reduced w.r.t. Rule E2-eager.
3. � is reduced w.r.t. Rule E2.

Proof (Sketch) (1) ⇔ (2) follows directly from the defini-
tion of antecedent-split-reduced form.
(2)⇒ (3). is trivial, as every proper endomorphic image of
a set of atoms At(ϕ) is a proper subset of At(ϕ).
(3) ⇒ (2). Consider an application of the rule E2-eager, in
which it substitutes some s-t tgd τ in � with a set of s-t tgds
T , s.t.� ≡ � \{τ }∪T . Let now ϕ be the antecedent of τ and
ϕi be the antecedent of some tgd τi ∈ T . By definition of E2-
eager, At (ϕi) ⊂ At (ϕ). We have to show that At (ϕi) is an
endomorphic image of At (ϕ). Suppose to the contrary that it
is not. We show that then τi is “superfluous” in T : Namely,
the property (� \ {τ }) ∪ T \ {τi } ≡ (� \ {τ }) ∪ T holds. Of
course, if T only contains such tgds which are superfluous,
then the tgd τ itself can be deleted by the E1 rule, which
is a contradiction to the assumption of this theorem. On the
other hand, if T is non-empty and contains only tgds whose
antecedent is an endomorphic image of ϕ, then also the E2
Rule is applicable.

To show that τi is superfluous in T , consider the following
two cases:

(a) There exists no homomorphism ϕ → ϕi . Then, τi is
superfluous in T , in a sense that the property (� \{τ })∪
T \ {τi } |� τ holds. Indeed, according to E2-eager, the
conclusion of τi was created by chasing At (ϕi)with�.
Since ϕ → ϕi , τ played no role in that chase, and thus
� \ {τ } |� τi holds, and hence τi is indeed superfluous.

(b) There exists a homomorphism ϕ → ϕi . Let � denote
the set of all homomorphisms ϕ→ ϕi . Then, we define
Tϕ ⊂ T , s.t. Tϕ = {τ j ∈ T | At(ϕ j) = ϕλ for some
λ ∈ �}, i.e., the antecedents of the tgds in Tϕ are sub-
sets of ϕi and, at the same time, endomorphic images
of ϕ. Similarly to the previous case, one can show that
(� \ {τ }) ∪ Tϕ |� τi holds.Thus, τi is superfluous. 	

There is a close connection between antecedent-split-
reduced mappings and the split-reduced form from Defini-
tion 3:

123

294 G. Gottlob et al.

Lemma 15 Let� = �st∪�t with�t = ∅, and suppose that
�st cannot be simplified by any of the Rules 1,4, and 5 from
Fig. 1 (i.e., the rules which would reduce ConSize(�st) are
not applicable). Then, the following equivalence holds: �st

is antecedent-split-reduced if Rule 3 (i.e., splitting) cannot
be applied in such a way that the antecedents of all resulting
dependencies can be further simplified (by Rule 2).

Proof First, suppose that Rule 3 (i.e., splitting) followed by
a simplification of the antecedent of each new tgd is applica-
ble. Then, in the first place, some τ ∈ �st can be replaced by
tgds τ1, . . . , τn , s.t. the antecedent of each τi coincides with
the antecedent of τ and the conclusion of each τi is a proper
subset of the conclusion of τ . Moreover, each τi can then be
transformed via Rule 2 into τ ′i , s.t. the antecedent of τ ′i is a
proper subset of the antecedent of τ and, therefore, also of
τ . Hence, �st is not antecedent-split-reduced.

For the opposite direction, suppose that �st is not ante-
cedent-split-reduced. We have to show that then Rule 3 can
be applied followed by applying Rule 2 to each of the new
tgds. Since �st is not antecedent-split-reduced, there exists
a τ ∈ �st with antecedent ϕ which can be replaced by a set
of new tgds {τ1, . . . , τn}, s.t. for every i,At(ϕi) ⊂ At(ϕ)
and |At (ψi)| < |At (ψ)| hold, where ϕi and ψi , respec-
tively, denote the antecedent and conclusion of τ . Moreover,
� ≡ �′ holds with �′ = (� \ {τ }) ∪ {τ1, . . . , τn}.

Analogously to the proof of Theorem 5, we may assume
w.l.o.g., that each of the new antecedents ϕi is an endomor-
phic image ofϕ. Moreover, we may assume w.l.o.g., that each
ψi contains only one connected component since otherwise
we simply split τi further via Rule 3. We claim that for every
connected component of ψ , there is one i , s.t. this connected
component corresponds to ψi . Suppose to the contrary that
there is a connected component χ of ψ which does not have
a corresponding ψi . Then, we derive a contradiction as fol-
lows. The tgd τ ′ obtained from τ by reducing the conclusion
ψ to χ is clearly implied by �′. Hence, by Lemma 4, either
(1) �′ |� τ ′′ holds for some proper instance τ ′′ of τ ′ (see
Definition 7) or (2) τ ′ is already implied by a single tgd
σ ∈ �′. In case (1), we thus have � |� τ ′′ for the proper
instance τ ′′ of τ ′. But then, also � |� τ ∗, where τ ∗ denotes
the tgd obtained from τ by replacing the connected compo-
nent χ by the conclusion of τ ′′ (i.e., a proper instance of
χ) and leaving all other connected components unchanged.
By Lemma 5, Rule 5 is applicable to τ ∈ �, which is a
contradiction. Now consider case (2), i.e., τ ′ is implied by a
single tgd σ ∈ �′. Clearly, σ cannot be contained in� \ {τ }
since this would mean that the connected component χ of
the conclusion of τ could be deleted from � via Rule 5. So
suppose that σ = τ j for some j , i.e., we have τ j |� τ ′.
By Lemma 10, this means that the conclusion χ of τ ′ can
be obtained by chasing the antecedent ϕ of τ ′ with χ . Note
however that χ is a single connected component. Hence, all

of χ are obtained in a single chase step, since otherwise we
conclude that also a proper instance of τ ′ is implied by τ j

and we proceed as in case (1). Since χ is obtained in a single
chase step, the conclusion of τ j indeed comprises all of χ .

To conclude the proof, recall the above observation that
each of the antecedents ϕi is an endomorphic image of ϕ.
But then we can indeed apply the Rule 2 in the reverse
direction to extend each ϕi to ϕ. Let the resulting tgds be
called {τ̄1, . . . , τ̄n}. Then, we indeed have that τ ∈ � may
be replaced by {τ̄1, . . . , τ̄n} via Rule 3, and each τ̄i may be
further simplified via Rule 2 to τi with strictly smaller ante-
cedent. 	

Most importantly, the notion of antecedent-split-reduced
mappings allows us to define a unique (up to isomorphism)
normal form of the set of s-t tgds. To this end, we consider the
transformation of an arbitrary mapping consisting of s-t tgds
and target egds by the Propagate procedure from Fig. 3
followed by exhaustive application of the rules E1 and E2
from Fig. 4. Below we show that the resulting normal form
is indeed unique up to isomorphism:

Lemma 16 The rewrite rules E1 and E2 in Fig. 4 are correct,
i.e.: Let � be a set of dependencies and let �′ be the result
of applying one of the rules E1 or E2 to �. Then � ≡ �′.
Proof The correctness follows directly from the fact that a
logical implication test is built into the rules E1 and E2. 	

Theorem 6 Let� = �st∪�t andϒ = ϒst∪ϒt be two logi-
cally equivalent equivalent sets consisting of s-t tgds and tar-
get egds and let 〈�s, �

∗
st , �t 〉 and 〈ϒs, ϒ

∗
st , ϒt 〉 be obtained

from� respectivelyϒ by first applying the Propagate pro-
cedure and then exhaustively applying the rules E1 and E2
to these mappings. Then�t ≡ ϒt holds and�∗st andϒ∗st are
isomorphic.

Proof The equivalence �t ≡ ϒt was shown in Lemma 9. It
remains to show that �∗st and ϒ∗st are isomorphic.

Let σ ∈ �∗st be an arbitrary s-t tgd in�∗st . We have to show
that it has an isomorphic analogue inϒ∗st (and vice versa). Let
�̄σ denote the set of s-t tgds whose antecedents are the proper
subsets of σ and whose conclusions are obtained by chasing
the corresponding antecedent database with�∗st∪�t (i.e., we
get s-t tgds analogous to the τ ′i s in Rule E2). By Lemma 13,
this is the same as chasing these particular source instances
with �.

By ϒ |� σ , there exists a subset T ⊆ ϒs ∪ ϒ∗st ∪ ϒt , s.t.
T ∪�s ∪ �̄σ ∪�t ∪�∗st \ {σ } |� σ . We claim that there even
exists a set Tσ ⊆ ϒ∗st with Tσ ∪�s∪�̄σ ∪�t∪�∗st \{σ } |� σ ,
s.t. every τ ∈ Tσ fulfills the following properties:

1. The antecedents ϕτ (xτ) of τ and ϕσ (xσ) of σ are homo-
morphically equivalent;

123

Normalization and optimization 295

2. there exists a substitutionλ, such thatϕτ (xτ λ) = ϕσ (xσ).
That is, the antecedent of τ can be mapped onto the entire
antecedent of σ ;

3. τ is not equivalent to any dependency in �st \ {σ }

In order to prove this claim, we start with a set T ⊆ ϒs ∪
ϒ∗st ∪ϒt , s.t. T ∪�s ∪ �̄σ ∪�t ∪�∗st \ {σ } |� σ and remove
all parts from T until a subset Tσ ⊆ T with the desired prop-
erties is obtained. It is convenient to write�∗ as a short-hand
for �s ∪ �̄σ ∪�t ∪�∗st \ {σ }.
(a) Eliminate ϒs from T . This is justified by the fact that
ϒ∗st ∪ ϒt |� σ holds. Suppose to the contrary that this fact
does not hold: that is, let I be an instance over the schema
S ∪ T, in which the only non-empty relations are those of
the antecedent database At(ϕσ (xσ)) of σ . Then, chasing I
with ϒst ∪ ϒt leads to an instance Iϒst∪ϒt |� σ , whereas
Iϒs∪ϒst∪ϒt |� σ . Since source dependencies in ϒs are only
applicable to relations of the source schema, it must hold that
ϒs modifies At(ϕσ (xσ)); otherwise there would be no differ-
ence between the two chase results. That is, At(ϕσ (xσ)) |�
ϒs . By Lemma 11, part (2), this means that the chase of
At(ϕσ (xσ)) with ϒ fails. Thus, also the chase with � fails,
which contradicts Lemma 11, part (1).

(b) Eliminateϒt from T . The correctness of this step follows
immediately from the equivalence ϒt ≡ �t that we showed
in Lemma 9.

(c) Eliminate every tgd τ from T which is equivalent to some
σ ′ ∈ �∗st \ {σ }. Clearly, after such a reduction, we still have
T ∪�∗ |� σ with �∗ = �s ∪ �̄σ ∪�t ∪�∗st \ {σ }.
(d) Eliminate from T all dependencies with the antecedent
ϕi (xi) which is not homomorphically equivalent to the ante-
cedent ϕσ (xσ) of σ . Indeed, for every s-t tgd τi ∈ ϒ∗st with
the antecedent “more specific” than ϕσ (xσ), we may con-
clude that for arbitrary �′, such that �′ |� σ , it holds that
�′ \ {τi } |� σ . For every τ j with the antecedent “more gen-
eral” than ϕσ (xσ), we have that�∗\{σ } |� τ j , and therefore,
τ j is redundant in T ∪�∗ \ {σ }.
(e) Eliminate from T all s-t tgds with the antecedents ϕk(xk)

such that there exists no variable substitution λ : ϕk(xkλ) =
ϕσ (xσ), where ϕσ (xσ) again denotes the antecedent of σ .
First, observe that there are no dependencies in T whose
antecedents under any variable substitution are supersets of
ϕσ (xσ), since they are “more specific” than ϕσ (xσ) and have
therefore been removed in the previous step.

Now consider the substitutions λki : ϕk(xkλki) ⊂ ϕσ (xσ)
and the corresponding s-t tgds τk ∈ T . We claim that the fol-
lowing property holds: For any set of dependencies K such
that τk ∈ K , K |� σ iff (K \ {τk}) ∪ Kτk |� σ , where Kτk is

the set of all instantiations of τk with λki : τki = ϕk(xkλki)→
∃yk ψ(xkλki , yk).
The claim follows from the consideration of the implication
test by Beeri and Vardi [4]: To chase the antecedent database
At (ϕσ (xσ)) of σ, τk is instantiated by every λki and thus
has the same effect in the chase as Kτk . Hence, every τk in T
whose antecedent cannot be projected onto the entire ϕσ (xσ)
may be replaced by the respective instantiations Kτk .

We now recall that the antecedents of the s-t tgds ρl ∈
�̄σ ⊂ �∗ range over all possible subsets of ϕσ (xσ). That
is, for each τki with the antecedent ϕk(xkλki), there exists
ρki with the identical antecedent and with the conclusion
obtained by chasing ϕk(xkλki) with �. Since � and ϒ are
equivalent, we conclude that ρki |� τki and thus, �∗ |� Kτk

for every τk . Hence, it is indeed allowed to eliminate from T
all s-t tgds with the antecedents ϕk(xk) such that there exists
no variable substitution λ : ϕk(xkλ) = ϕσ (xσ).
After the above five elimination steps, T is indeed reduced
to a set Tσ of the desired form. Note that Tσ is non-empty.
This can be seen as follows: The s-t tgd σ is reduced w.r.t.
rules E1 and E2. Hence,�s ∪ �̄σ ∪�t ∪�∗st \ {σ } |� σ and,
therefore, Tσ must be non-empty.

By obvious symmetry reasons, the same holds for any s-t
tgd τ ∈ ϒ∗st as well: each τ must also have such a corre-
sponding non-empty set Sτ ⊆ �∗st , with elements satisfying
the conditions 1–3.

We now construct a directed bipartite graph G =
(V1, V2, E) as follows: We associate the s-t tgds in �∗st and
ϒ∗st with the vertices, s.t. V1 = �∗st and V2 = ϒ∗st . Moreover,
whenever τ ∈ Tσ (resp. σ ∈ Sτ), then there is an edge from
τ to σ (resp. from σ to τ).

The conditions 1–3 of Tσ and Sτ translate into the follow-
ing properties of the graph G:

a. Every vertex has an incoming edge, since the sets Tσ and
Sτ are non-empty.

b. Cycles in G have length at most 2. Indeed, by property 2,
an edge from τ to σ implies that the size of the antecedent
of τ is no less than the size of σ . But then all s-t tgds asso-
ciated with the vertices in a cycle must have antecedents
of equal size. By properties 1 and 2, all such anteced-
ents are isomorphic. This means that the conclusions are
isomorphic as well, since they are obtained as cores of
the chase of isomorphic source instances with equivalent
sets of dependencies (procedure Propagate).

c. Vertices that participate in such a two-edge cycle are dis-
connected from the rest of the graph. This follows from
the fact that the corresponding s-t tgds are equivalent, and
thus, any other edge would contradict the property 3.

We obtained a graph, of which each vertex should be
connected by an incoming path to a cycle (there is only a
finite number of vertices, and from each vertex, an infinite

123

296 G. Gottlob et al.

incoming path can be traced, by the property “a”). Consid-
ering “c”, this is only possible if each vertex itself belongs
to a cycle, and, by “b”, G must consist of connected com-
ponents of size 2. In total, this means that every s-t tgd
σ ∈ �∗st has an isomorphic counterpart τ ∈ ϒ∗st and vice
versa. 	

The question now is how to further simplify the set of
s-t tgds. Due to the egds, we could strengthen Rule 5 from
Sect. 3 (i.e., deletion of redundant atoms from some conclu-
sion) to the Rule E3 in Fig. 4. Unfortunately, this would again
lead to a non-unique normal form as the following example
illustrates.

Example 15 Consider the mapping consisting of two s-t tgds
and one egd:

S(x, y)→ P(x, z) ∧ Q(x, z)

S(x, y)→ R(x, z) ∧ Q(x, z)

P(x, z1) ∧ R(x, z2)→ z1 = z2

It is easy to verify that the atom Q can be eliminated by the
rule E3 from the conclusion of any of the two tgds, but not
from both. 	

However, if we content ourselves with the simplifications
from the s-t tgds only case (i.e,. Rules 1–5 from Sect. 3), then
we get an intuitive normal form which is simplified to a large
extent and which is guaranteed to be unique up to isomor-
phism. As was mentioned earlier, it is sometimes important
in data exchange to arrive at a unique canonical universal
solution (this is in particular the case for defining the seman-
tics of queries in a way that the semantics does not not depend
on the syntax of the dependencies). In these situations, the
normal form defined below should be chosen.

Definition 12 Consider a set � = �st ∪ �t of s-t tgds �st

and target egds�t and let the result of Propagate(�st , �t)

be denoted by (�s, �
′
st). Moreover, let �∗st denote the set of

s-t tgds resulting from �′st by exhaustive application of the
rules E1, E2 as well as the rules 1–5 from Sect. 3, and let�∗s
denote the result of exhaustive reduction of �s via rule E1.
Then, we call 〈�∗s , �∗st , �t 〉 the normal form of �.

Theorem 7 Let �=�st ∪�t and ϒ =ϒst ∪ϒt be equiv-
alent sets consisting of s-t tgds and target egds and let
〈�∗s , �∗st , �t 〉 and 〈ϒ∗s , ϒ∗st , ϒt 〉 be the corresponding nor-
mal forms. Then �∗st and ϒ∗st are isomorphic. Moreover,
�t ≡ ϒt holds.

Proof The fact that �∗st and ϒ∗st are isomorphic follows
immediately from Theorems 1 and 6. The equivalence �t ≡
ϒt was proved in Lemma 9. 	

Homomorphically equivalent components The normal
form obtained by the Propagate procedure followed by the

Rules E1 and E2 is not optimal in all respects yet. In partic-
ular, both the Propagate procedure and the Rule E2 may
have introduced more atoms than needed in the conclusion
of s-t tgds. Moreover, by the E2 rule, we may have split the
antecedent of tgds into several smaller ones, such that the
total number of atoms in the antecedents is increased. Of
course, we may now simply apply the rules from Fig. 1 to
further simplify the set of s-t tgds. However, in the final part
of this section, we want to look in a principled way at further
optimizations of the normal form of s-t tgds in the presence
of egds. The following concept is crucial.

Definition 13 Let� = �st∪�t . We say that two tgds τ1 and
τ2 in�st are homomorphically equivalent if their antecedents
are. Moreover, we say two sets S, S′ of tgds are homomor-
phically equivalent if the tgds in one set and the tgds in the
other set are homomorphically equivalent.

Obviously, homomorphical equivalence is indeed an
equivalence relation on�st . We refer to the equivalence clas-
ses of this relation as the HE-components of �st .

We now define a partial order on the HE-components of a
set of s-t tgds by considering a “more general” component as
greater than a “more specific” one (i.e., there are homomor-
phisms from the more general one into the “more specific”
one but not vice versa). Moreover, we also consider the clo-
sure under the greater than relation. Below, we show that
the closure of each HE-component is unique up to logical
equivalence.

Definition 14 Let � = �st ∪ �t be a mapping, and let
S = {S1, . . . , Sm} denote the HE-components of �st . We
define a partial order as follows: For any pair of indices i, j ,
we define Si ≥ S j if for every antecedent ϕ(x) of the tgds in
Si and every antecedent χ(z) of the tgds in S j ,At(ϕ(x))→
At(χ(z)) holds (i.e., there is a homomorphism from ϕ(x) to
χ(z)). If S j ≥ Si , Si is said to be strictly greater than S j ,
Si > S j .

For i ∈ {1, . . . , n}, we define the closure of Si above as
Cl≥(Si , �) = {τ | τ ∈ S j for some j with S j ≥ Si }.
Example 16 Consider a source schema consisting of a sin-
gle relation symbol P(·, ·) and a schema mapping � =
{τ1, τ2, τ3, τ4}, where the τ ′i s are defined as follows:

τ1 : P(x1, x2) ∧ P(x2, x3) ∧
P(y1, y2) ∧ P(y2, y3) ∧ P(y′2, y3)→ Q(x1, y3)

τ2 : P(u1, u2) ∧ P(u2, u3) ∧ P(u2, u′3)→ Q(u3, u′3)
τ3 : P(v1, v2)→ T (v1, v2)

τ4 : P(v1, v1)→ Q(v1, v1)

Intuitively, the binary relation symbol P(·, ·) can be thought
of as defining edges of a directed graph. Then, the anteced-
ent of the tgd τ1 consists of two connected components: two

123

Normalization and optimization 297

Fig. 5 Antecedents of τ1 (left) and τ2 (right), Example 16

paths of length two, one having an additional edge pointing
to the peak. The antecedent of the tgd τ2 corresponds to a
Y-shaped graph (see Fig. 5). The antecedent of τ3 consists of
a single edge, and the antecedent of τ4 consists of a single
self-loop.

The antecedents of τ1 and τ2 have the same cores (a path of
length 2) and thus are homomorphically equivalent. Hence,
τ1 and τ2 are part of the same HE-component S1. The tgd
τ3 belongs to a different HE-component S2 with S2 > S1.
Indeed, there is a homomorphism sending P(v1, v2) either
to the antecedent of τ1 or the antecedent of τ2, but not vice
versa. For the same reason, τ4 gives rise to yet another HE-
component S3 with S1 > S3. In total, � has three HE-com-
ponents. As far as the “closure above” is concerned, we thus
have Cl≥(S1, �) = {τ1, τ2, τ3},Cl≥(S2, �) = {τ3}, and
Cl≥(S3, �) = �.

Lemma 17 Let� = �st∪�t andϒ = ϒst∪ϒt be two logi-
cally equivalent mappings. Moreover, let S be an HE-compo-
nent in�st , and let T be an HE-component inϒst , s.t. S and
T are homomorphically equivalent. Then, Cl≥(S, �)∪�t ≡
Cl≥(T, ϒ) ∪ϒt holds.

Proof By Lemma 9, we have �t ≡ ϒt . It remains to show
that, for every τ ∈ Cl≥(T, ϒ), the implication Cl≥(S, �) ∪
�t |� τ holds. The implication Cl≥(T, ϒst) ∪ ϒt |� σ for
every σ ∈ S follows by symmetry.

By � ≡ ϒ , we clearly have � |� τ . Let ϕ(x) denote
the frozen antecedent of τ and let I = At(ϕ(x)). Now con-
sider the result I�st of chasing I with �st : Clearly, only
those tgds σ ∈ �st fire, s.t. there is a homomorphism from
the antecedent of σ to ϕ(x). These are precisely the tgds in
Cl≥(S, �st). Hence, we have I�st = I Cl≥(S,�). But then, by
the implication criterion of [4] recalled in Lemma 10,� |� τ
holds iff Cl≥(S, �) ∪�t |� τ holds. 	

The following lemma shows that, unless a mapping
contains redundant dependencies, the HE-components of a
mapping are in a sense invariant under logical equivalence.
Moreover, HE-components may be exchanged between log-
ically equivalent mappings.

Lemma 18 Let � = �st ∪ �t and ϒ = ϒst ∪ ϒt be two
logically equivalent mappings, s.t. Rule E1 is not applicable
to them. Let S = {S1, . . . , Sm} denote the HE-components
of �st and T = {T1, . . . , Tn} the HE-components of ϒst .

Then, the following properties hold: n = m and for every
Si ∈ S, there exists exactly one j , s.t. the tgds in Si are
homomorphically equivalent to the tgds in Tj .

Proof W.l.o.g. suppose that there exists an HE-component
Si of �st , which is not homomorphically equivalent to any
HE-component Tj of ϒst . By assumption, � ≡ ϒ . Hence,
ϒ |� Si . Let T ∗ ⊆ T with T ∗ = ⋃{Tj | Tj ≥ Si }. By
the same considerations as in the proof of Lemma 17, only
the HE-components in T ∗ are used to test the implication
ϒ |� Si via Lemma 10. Hence, we have T ∗ |� Si .

On the other hand, also � |� T ∗. Now define S∗ =⋃{Sk | Sk ≥ Tj for some Tj ∈ T ∗}. Again, we may conclude
S∗ |� T ∗ and, therefore, also S∗ |� Si By assumption, ϒ
does not contain an HE-component whose tgds are homomor-
phically equivalent to Si . Therefore, all HE-components in
T ∗ are strictly greater than Si . But then, all HE-components
Sk in S∗ are also strictly greater than Si . Thus, � \ Si |� Si .
In other words, every dependency in Si can be removed from
�st by the Rule E1, which contradicts the assumption that
the E1 Rule is not applicable. 	

Lemma 19 Let � = �st ∪ �t and ϒ = ϒst ∪ ϒt be two
logically equivalent mappings, s.t. the E1 Rule is not appli-
cable to them. Moreover, let S be an HE-component in �st ,
and let T be an HE-component inϒst , s.t. S and T are homo-
morphically equivalent. Then, the logical equivalence � ≡
(�st \ S) ∪ T ∪�t holds (i.e., we may replace the HE-com-
ponent S from � by the corresponding HE-component T
from ϒ).

Proof Let S = {S1, . . . , Sn} denote the HE-components of
�st and T = {T1, . . . , Tn} the HE-components of ϒst . By
Lemma 18, we may assume w.l.o.g., that every Si is homo-
morphically equivalent to Ti . Now let S and T of this lemma
correspond to S j and Tj for some j ∈ {1 . . . n}.

We apply Lemma 17 to all HE-components that are
strictly greater than S j resp. Tj : Let I = {i | Si > S j }.
Clearly, I = {i | Ti > Tj }. For every i ∈ I , we have
Cl≥(Si , �)∪�t ≡ Cl≥(Ti , ϒ)∪ϒt by Lemma 17. Then, also
(
⋃

i∈I Cl≥(Si , �)) ∪ �t ≡ (⋃i∈I Cl≥(Ti , �)) ∪ ϒt holds,
i.e.: (Cl≥(S j , �) \ S j) ∪�t ≡ (Cl≥(Tj , �) \ Tj) ∪ϒt , i.e.,
the HE-components strictly greater than S j and Tj lead to
logical equivalence.

Now if we apply Lemma 17 to S j and Tj , we may con-
clude Cl≥(S j , �) ∪ �t ≡ Cl≥(Tj , ϒ) ∪ ϒt . By the above
considerations, we may exchange in Cl≥(Tj , ϒ) all HE-com-
ponents that are strictly greater than Tj by the correspond-
ing HE-components from �. That is, Cl≥(S j , �) ∪ �t ≡
(Cl≥(S j , �) \ S j) ∪ Tj ∪ ϒt . By adding all remaining HE-
components of� to both sides of the equivalence, we get the
desired equivalence � ≡ (�st \ S) ∪ T ∪�t . 	

HE-components will turn out to be crucial for optimizing
the s-t tgds. Indeed, we show that for all optimization criteria

123

298 G. Gottlob et al.

considered here, local optimization inside every HE-compo-
nent yields a global optimum.

Definition 15 An optimization problem on sets of depen-
dencies is called a sum-minimization problem if the goal of
the optimization is to minimize a function F with the follow-
ing property: (1) F(�) ≥ 0 holds for every set of dependen-
cies � and (2) for any two sets of dependencies �,�′ with
� ∩�′ = ∅, we have F(� ∪�′) = F(�)+ F(�′).

Clearly, all optimization criteria studied here (like cardi-
nality-minimality, antecedent-minimality, conclusion-mini-
mality, and variable-minimality, see Definition 2) are sum-
minimization problems.

Definition 16 Let � = �st ∪ �t be a mapping, s.t. the E1
Rule is not applicable to it, i.e., � contains no s-t tgd that
may be deleted. Now consider a sum-minimization problem
whose goal is to minimize some function F over sets of s-t
tgds.

We say that � is globally optimal (or simply optimal) if,
for every mapping ϒ = ϒst ∪ ϒt with � ≡ ϒ , we have
F(�) ≤ F(ϒ).

We say that� is locally optimal if the following conditions
are fulfilled: let ϒ = ϒst ∪ϒt be an arbitrary mapping with
� ≡ ϒ . Moreover, let S be an arbitrary HE-component of�
and let T be the corresponding HE-component of ϒst , s.t. S
and T are homomorphically equivalent. Then, F(S) ≤ F(T)
holds.

Theorem 8 Let � = �st ∪ �t be a mapping, s.t. the E1
Rule is not applicable to it. Now consider a sum-minimi-
zation problem whose goal is to minimize some function F
over sets of s-t tgds. Then,� is globally optimal if it is locally
optimal.

Proof Let ϒ = ϒst ∪ϒt be an arbitrary mapping with � ≡
ϒ . By Lemma 18, there exist sets of s-t tgdsS = {S1, . . . , Sn}
and T = {T1, . . . , Tn}, s.t. S denotes the set of HE-compo-
nents of�st , T denotes the set of HE-components ofϒst , and
for every i , the tgds in Si are homomorphically equivalent to
the tgds in Ti .

First, suppose that� is globally optimal. We have to show
that then � is also locally optimal. Assume to the contrary
that F(Si)> F(Ti) holds for some i . We define�′ = (�st\Si)

∪ Ti ∪ �t . By Lemma 19, � ≡ �′. Moreover, since we are
considering a sum-minimization problem, we clearly have
F(�st) = F(�st \ Si) + F(Si) > F(�st \ Si) + F(Ti) =
F((�st \ Si)∪Ti) = F(�′). This contradicts the assumption
that � is globally optimal.

Now suppose that � is locally optimal. We have to show
that then � is also globally optimal. The local optimality
implies that F(Si) ≤ F(Ti) holds for every i . Since F
defines a sum-minimization problem, we have F(�st) =∑n

i=1 F(Si) and F(ϒst) = ∑n
i=1 F(Ti). But then also

F(�st) ≤ F(ϒst) holds, i.e., � is globally optimal. 	

Theorem 8 says, that for the optimization of an HE-
component, it does not matter how and if other HE-
components have already been optimized. However, this does
not mean that one can optimize a single HE-component in
isolation. In particular, the closure above must be considered.

As demonstrated by the Examples 14 and 15, aggressive
splitting and conclusion optimization lead to a non-unique
normal form. In the rest of the section, we consider an oper-
ation opposite to splitting: Namely, merging of multiple s-t
tgds, to enforce cardinality-minimality. As we will see, also
this approach leads to non-unique normal forms. The fol-
lowing theorem contains a property that any merge operation
must fulfill:

Theorem 9 Consider a mapping � = �s ∪ �st ∪ �t cre-
ated by the Propagate procedure and additionally, reduced
by the rules E1 and E2. Assume that dependency τ ∈ �st

with the antecedent ϕ can be substituted by the dependency
τ ′ with the antecedent ϕ′, such that�∪{τ ′}\{τ } ≡ � holds,
and At(ϕ′) does not cause a chase failure under �. Then, ϕ
must coincide (up to isomorphism) with some endomorphic
image of ϕ′.

Proof By Theorem 6, exhaustive application of the
rules E1 and E2 allows us to obtain a unique normal form of
s-t dependencies. Hence, if the mapping �′ = � ∪ {τ ′} \ τ
is logically equivalent to �, it is possible to bring it back in
the form isomorphic to � by applying the procedure Prop-

agate, followed by the rules E1 and E2.
Since At(ϕ′) does not cause a chase failure, we know that

Propagate does not affect ϕ′ in any way. Moreover, all the
remaining rules in�\{τ } remain unchanged after�′ is trans-
formed by E1 and E2. Hence, it must be the case that one
can obtain τ from τ ′ by (possibly successive) applications of
E2, and hence, ϕ has to be among the endomorphic images
of ϕ′. 	

To achieve cardinality-minimality, we will replace each
HE-component with a single tgd. As Theorem 9 suggests,
the antecedent of this tgd must contain every antecedent from
the original HE-component as an endomorphic image. The
following example illustrates that there is no unique minimal
“merged” antecedent.

Example 17 Recall the mapping � from Example 16, with
the HE-component S1 containing tgds τ1, τ2:

τ1 : P(x1, x2) ∧ P(x2, x3) ∧
P(y1, y2) ∧ P(y2, y3) ∧ P(y′2, y3)→ Q(x1, y3)

τ2 : P(u1, u2) ∧ P(u2, u3) ∧ P(u2, u′3)→ Q(u3, u′3)

Let ϕ1, ϕ2 denote the antecedents of τ1 and τ2, respectively.
Recall the graphical representation of ϕ1 and ϕ2 that was
given in Fig. 5. Obviously, ϕ1 and ϕ2 are not isomorphic.

123

Normalization and optimization 299

Fig. 6 Possible merges of antecedents ϕ1, ϕ2, Example 17

Fig. 7 Procedures Merge and MergeTgds

Now, there are two ways of adding a single edge to ϕ1 in
order to get a minimum conjunctive query containing both
antecedents as its endomorphic images namely, ϕ′1 = ϕ1 ∧
P(x2, z) and ϕ′′1 = ϕ1 ∧ P(y2, z), see Fig. 6. Clearly, the
resulting antecedents ϕ′1 and ϕ′′1 are not isomorphic. 	

Example 17 shows that there is no unique optimal way
of merging s-t tgds from a single HE-component. Notably,
egds play no role here. On the other hand, an obvious unique
(though hardly optimal) way of merging would be to take a
conjunction of all antecedents in a HE-component of a map-
ping resulting from the exhaustive application of the rules E1
and E2 and renaming apart the variables in distinct tgds.

We conclude this discussion by presenting a procedure
that merges several homomorphically equivalent conjunctive
queries in one, of reasonable size and satisfying the condition
of Theorem 9. At every iteration, the procedure Merge takes
two conjunctive queries ϕi and ϕ j , finds a greatest common
(up to isomorphism) endomorphic image in them, which in
the worst case is the core, and renames the variables of ϕi in
such a way that it is stitched to ϕ j along this greatest common
endomorphic subquery. The resulting query ϕi j is thus sure
to have an endomorphism to ϕi as well as to ϕ j .

This operation is then used in the Procedure MergeTgds,
which produces a s-t tgd to substitute a given HE-component
in a mapping�. To build the conclusion of such a merged tgd,
MergeTgds uses the Propagate procedure, which chases
the merged antecedent with � and then takes the conjunc-
tion of atoms in the core of the resulting target instance as
the conclusion.

Definition 17 Let � be a set of s-t tgds, and let χ be a
conjunctive query. Then, we write �[χ] to denote the HE-
component of those tgds in�, whose antecedents are homo-
morphically equivalent to χ .

Theorem 10 Let � = �s ∪ �st ∪ �t be a mapping con-
sisting of source egds, s-t tgds, and target egds, �s and
�st being produced by the Propagate procedure, and let
χ be a CQ. Moreover, let (τ,�′s) be the output of Merge-

Tgds (�, χ). Then, the following equivalence holds: � ≡
(� \�[χ]) ∪�′s ∪ {τ }.
Proof First, the new s-t tgd τ ′ was created in step (b) of
MergeTgds by chasing with �, so � |� τ ′ holds and thus
� ≡ � ∪ {τ ′}. But then, also � |� � ∪ �′s ∪ {τ } follows
by Lemma 12, as both �′s and τ were produced by applying
Propagate Procedure to � ∪ {τ ′} ≡ �.

In the other direction, the merged antecedent ϕ(x) is at
least as “powerful” as any of the antecedent ϕi (xi) in �[χ],
in the following sense: whenever a substitution λ for the vari-
ables xi exists, such that At(ϕi (xiλ)) = I , then also for some
substitution μ for x,At(ϕ(xμ)) = I .

Indeed, suppose that at step (a) of MergeTgds, the
property Merge (�) |� � holds. Then, the claim is imme-
diate, since Merge is designed to deliver a CQ that satisfies
Theorem 9. If, however, Merge (�) has to be updated with
�s , the unifications performed by �s do not affect the prop-
erty that every CQ ϕi in � is an endomorphic image of ϕ.
Indeed, let μ be an endomorphism of ϕ(x) = Merge (�)

transforming it into some ϕi ∈ �. For every suchμ, we have
At(ϕ(xμ)) |� �s , so whenever two nulls v,w ∈ dom(At(ϕ))
are to be unified by�s , necessarily vμ = wμ holds. In total,
also the instance I created in step (a) of MergeTgds has
endomorphisms onto every At(ϕi).

Then, also the tgd τ ′, created in the step (b), is as powerful
as τi , as for each τi ∈ �st [χ], we know that the chase with

123

300 G. Gottlob et al.

�st has produced at least all the conclusion atoms of τi in
the conclusion of τ .

The step (c) with Propagate procedure does not affect
dependencies other than τ ′, since, by precondition of theo-
rem, �st results from Propagate procedure, and thus, no
frozen antecedent database of �st can cause chase failure
under �. Moreover, an application of Propagate to τ ′ can-
not deteriorate any endomorphism, which makes the ante-
cedent ϕ′(x′) of τ ′ isomorphic to some ϕi ∈ �. Indeed,
suppose this happens and the unification of variables
x ′k, x ′l ∈ x′ cancels some endomorphism λ. That is, λ is such
that ϕ′(x′λ) = ϕi (xi), and x ′kλ = x ′lλ. Then, in step 2.(d) of
the Propagate procedure, the source egd ε : ϕ′(x′)→ x ′k =
x ′l is produced, and At(ϕi) |� ε must be the case. Hence, by
� ≡ �∪{τ ′} and Claim 2 of Lemma 11, the chase of frozen
At(ϕi)with� fails, which contradicts Claim 1 of Lemma 11
and the fact that �st is the output of Propagate. 	

Example 18 Recall the tgds τ1 and τ2 with the antecedents
ϕ1 and ϕ2 from Example 17. As illustrated by that example,
there are two possible ways to merge ϕ1 and ϕ2, resulting
in two possible merged antecedents ϕ′1 = ϕ1 ∧ P(x2, z) and
ϕ′′1 = ϕ1 ∧ P(y2, z). The corresponding outputs of the pro-
cedure MergeTgds are

τ ′1 : P(y1, y2) ∧ P(y2, y3) ∧ P(y′2, y3)

∧P(x1, x2)∧ P(x2, x3)∧ P(x2, z)→ Q(x1, y3)∧ Q(x3, z)

and

τ ′′1 : P(y1, y2) ∧ P(y2, y3) ∧ P(y′2, y3) ∧ P(y2, z)

∧P(x1, x2) ∧ P(x2, x3)→ Q(x1, y3) ∧ Q(y3, z),

respectively. 	

Summary To sum up, the following lessons have been
learned from our analysis of the normalization and optimi-
zation of s-t tgds in the presence of egds: In contrast to the
tgd-only case, we have seen that one has to be very careful
with the definition of splitting and optimization so as not to
produce a non-unique normal form: If we aim at a strict gen-
eralization of the splitting rule from Sect. 3 via the Rule ES
in Fig. 4, then there does not exist a unique normal form. This
also happens if we aim at a strict generalization of the Rule 5
(deletion of redundant atoms from the conclusion of a tgd)
via the Rule E3 in Fig. 4. For most purposes, we therefore
consider the transformation of an arbitrary mapping (consist-
ing of s-t tgds and target egds) via the Propagate procedure
and exhaustive application of the rules E1 and E2 from Fig. 4
followed by the Rules 1–5 from Sect. 3 as the best choice:
The resulting normal form is unique up to isomorphism and
incorporates a reasonable amount of splitting and simplifi-
cation. From the splitting point of view, the resulting normal
form is referred to as “antecedent-split-reduced”. This cor-
responds to a restriction of the splitting rule in the tgd-only

case to those situations where subsequent antecedent sim-
plifications of all resulting dependencies are possible. Such
a restriction is justifiable by the fact that one of the main
motivations for splitting is indeed to further reduce the ante-
cedents. From the optimization point of view, the Rules 1–5
guarantee that we do not perform worse than in the tgd-only
case. But of course, this leaves some additional potential of
further optimization in the presence of egds (in particular the
Rule E3) unexploited.

We have also identified the HE-components (components
of tgds with homomorphically equivalent antecedents) as an
important handle for the most common optimization tasks on
the s-t tgds (in particular, for all optimization criteria accord-
ing to Definition 2). We have seen that a global optimum
according to the optimization criteria studied here is obtained
by locally optimizing the s-t tgds inside each HE-component.
In particular, this allowed us to define a simple procedure,
which transforms a mapping into an equivalent one with the
smallest possible number of s-t tgds. Of course, also in this
case, uniqueness is not guaranteed.

We have entirely concentrated on the normalization and
optimization of the s-t tgds, while a transformation of the
egds has not been considered. Indeed, a normal form of the
(source or target) egds is not important for our purposes since
we will show in Theorem 11 that the unique (up to isomor-
phism) canonical universal solution in data exchange only
depends on the normalization of the s-t tgds—the equiva-
lence of the source egds and the concrete syntax of the egds
are irrelevant.

5 Aggregate queries

As an application for the schema mappings normalization,
in this chapter, we discuss the semantics and evaluation
of aggregate queries in data exchange, i.e., queries of the
form SELECT f FROM R, where f is an aggregate operator
min(R.A),max(R.A), count(R.A), count(∗), sum(R.A),
or avg(R.A), and where R is a target relation symbol or, more
generally, a conjunctive query over the target schema and A
is an attribute of R. For this purpose, we first recall some
basic notions on query answering in data exchange as well
as some fundamental results on aggregate queries from [1].

Certain answers Though any target database satisfying the
schema mapping and local constraints is called a “solution”, a
random choice of a candidate for materializing a target data-
base is not satisfactory: query answering in data exchange
cannot be reduced to evaluating queries against random solu-
tions. The widely accepted approach is based on the notion
of certain answers:

Definition 18 Let � be a schema mapping over the schema
〈S,T〉, and let I be an instance over S. Then, the certain
answer for a query q over T and for the source instance I are

123

Normalization and optimization 301

certain(q, I,W(I)) =
⋂
{q(J)|J ∈W(I)},

where W(I) is the set of possible worlds for I and �.

Several proposals can be found in the literature [9,15,20,21]
as to which solutions should be taken as possible worlds
W(I). Typical examples are the set of all solutions, the set of
universal solutions, the core of the universal solutions, or the
CWA-solutions. For conjunctive queries, all these proposals
lead to identical results.

Aggregate certain answers Afrati and Kolaitis [1] initi-
ated the study of the semantics of aggregate queries in data
exchange. They adopted the notion of aggregate certain
answers for inconsistent databases by Arenas et al. [3] to
data exchange:

Definition 19 [1] Let query q be of the form SELECT f
FROM R, where R is a target relation symbol or, more gener-
ally, a first-order query over the target schema T, and f is one
of the following aggregate operators: min(R.A),max(R.A),
count(R.A), count(∗), sum(R.A), or avg(R.A) for some
attribute A of R. For all aggregate operators but count(∗),
tuples with a null value in attribute R.A are ignored in the
computation.

– Value r is a possible answer of q w.r.t. I and W(I) if there
exists an instance J ∈W(I) for which f (q)(J) = r .

– poss(f (q), I,W(I)) denotes the set of all possible
answers of the aggregate query f (q) w.r.t. I and W(I).

– For the aggregate query f (q), the aggregate certain
answer agg-certain(f, I,W(I)) w.r.t. I and W(I) is the
interval

[
glb(poss(f (q), I,W(I))), lub(poss(f (q), I,W(I)))

]

where glb and lub stand, respectively, for the greatest
lower bound and the least upper bound.

Semantics of aggregate queries via endomorphic images
A key issue in defining the semantics of queries in data
exchange is to define which set of possible worlds should be
considered. In [1], Afrati and Kolaitis showed that all previ-
ously considered sets of possible worlds yield a trivial seman-
tics of aggregate queries. Therefore, they introduced a new
approach via the endomorphic images of the canonical uni-
versal solution. Let Endom(I,M) denote the endomorphic
images of the canonical universal solution J ∗ = CanSol(I),
i.e.: J ∈ Endom(I,M) if there exists an endomorphism
h : J ∗ → J ∗, s.t. J = h(J ∗). As shown in [1], taking
W(I) = Endom(I,M) leads to an interesting and non-triv-
ial semantics of aggregate queries. However, in general, the
semantics definition depends on the concrete syntactic rep-
resentation of the s-t tgds.

Example 19 Consider the source schema S = {P}, target
schema T = {R} and the pair of schema mappings M1 =

〈S,T, �1〉 and M2 = 〈S,T, �2〉with the following s-t tgds:

�1 = {P(x)→ (∃y)R(1, x, y)} and

�2 = {P(x)→ (∃y1 . . . yn)R(1, x, y1) ∧ . . . ∧ R(1, x, yn)}
Clearly, M1 and M2 are logically equivalent. However,
for the source instance I = {P(a)}, they yield differ-
ent canonical universal solutions J1 = {R(1, a, y)} and
J2 = {R(1, a, y1), …, R(1, a, yn)}. Let A denote the name
of the first attribute of R. Then, all of the three aggregate que-
ries count(R.A), count(∗), and sum(R.A) have the range
semantics [1, 1] in M1 and [1, n] in M2, i.e.: M1 admits
only one possible world and the three aggregate queries eval-
uate to 1 in this world. In contrast, M2 gives rise to a number
of possible worlds with {R(1, a, y1), . . . , R(1, a, yn)}being
the biggest one and {R(1, a, y)} the smallest. Thus, the three
aggregate queries may take values between 1 and n. 	

In order to eliminate the dependence on the concrete syn-
tactic representation of the s-t tgds, we have defined a new
normal form of s-t tgds in Definition 12. Below, we show
that we thus get a unique canonical universal solution also in
the presence of target egds.

Theorem 11 Let M = 〈S,T, �st ∪�t 〉 be a schema map-
ping, and let �s ∪�∗st ∪�t be the normal form of �st ∪�t .
Moreover, let I be a source instance and J ∗ the canonical
universal solution for I under M obtained via an oblivi-
ous chase with �∗st followed by a chase with �t in arbitrary
order. Then, J ∗ is unique up to isomorphism. We denote J∗
as CanSol∗(I).
Proof (Sketch) By Theorem 6, the normal form of the
s-t tgds is unique up to isomorphism. Hence, also the result
of the oblivious chase with the s-t tgds is unique up to
isomorphism. Finally, also the chase with equivalent sets
of egds produces isomorphic canonical universal instances.
This property is proved by induction on the length of one of
the chase sequences. 	

To obtain a unique range semantics of the aggregate func-
tions min,max, count, count(∗), sum, and avg, we there-
fore propose to follow the approach of [1], with the only dif-
ference that we take the unique target instance CanSol∗(I)
from Theorem 11.

6 Conclusion

We have initiated the study of a theory of schema mapping
optimization. We have thus presented several natural opti-
mality criteria and a rewrite rule system for transforming any
set of s-t tgds into an equivalent optimal one. Recently, sev-
eral other works have also presented rewrite rules for trans-
forming a set of s-t tgds into an equivalent one with better
computational properties. In [23] and [26], the authors aim
at the transformation of a set � of s-t tgds into an equiva-
lent set �′, s.t. chasing a source instance with �′ directly

123

302 G. Gottlob et al.

yields the core of the universal solutions of the correspond-
ing data exchange problem. In [22], this transformation of
s-t tgds is extended to mappings, which comprise also func-
tional dependencies as target dependencies. The transforma-
tions in [22,23,26] insert negated atoms and/or inequalities
in the antecedents of some s-t tgds so as to block certain
forms of applying these s-t tgds in the chase. The goal pur-
sued by these transformations is to avoid the expensive core
computation by post-processing of the canonical universal
solution and to obtain the core directly as the chase result.
Normalization and optimization of the mappings are not in
the scope of those transformations.

In order to extend our rewrite rule system to schema map-
pings including target egds, the most important ingredients
of our transformation (namely splitting and simplification of
tgds) had to be defined very carefully so as not to destroy the
uniqueness of the normal form. We have investigated several
forms of splitting and of optimization, and we have identified
a rewrite rule system which indeed guarantees to produce
a normal form that is again unique up to variable renam-
ing. Finally, we have applied the normalization of schema
mappings containing target egds to aggregate queries in data
exchange. An implementation of the presented algorithms is
freely available from http://www.dbai.tuwien.ac.at/proj/sm.

In this paper, we have only considered the optimization of
mappings with respect to logical equivalence. As pointed out
in [10], weaker notions of equivalence such as “data exchange
equivalence” and “conjunctive query equivalence” may
sometimes be more appropriate. Unfortunately, many opti-
mization tasks in these relaxed settings are undecidable [24].

As future work, our results should be extended to more
expressive schema mappings, including second-order s-t tgds
or target tgds. Not surprisingly, a unique normal form via
redundancy elimination is not feasible for the target tgds:
Consider the set of target tgds �t = {P(x) → R(x) ∧
S(x), R(x)→ S(x), S(x)→ R(x)}. Now the tgd P(x)→
R(x) ∧ S(x) can be either reduced to P(x) → R(x) or to
P(x)→ S(x). Of course, even if no unique normal form of
the tgds exists, it is still conceivable that one may obtain a
unique (up to isomorphism) canonical universal solution via
redundancy elimination from the tgds.

Acknowledgments R. Pichler and V. Savenkov acknowledge support
by the Vienna Science and Technology Fund (WWTF), project ICT08-
032. V. Savenkov is a holder of a scholarship from the European program
“Erasmus Mundus External Cooperation Window”. G. Gottlob’s work
was supported by EPSRC grant EP/E010865/1 “Schema Mappings and
Automated Services for Data Integration and Exchange”. G. Gottlob is
the holder of a Royal Society Wolfson Research Merit Award.

References

1. Afrati, F.N., Kolaitis, P.G.: Answering aggregate queries in data
exchange. In: Proceedings PODS’08, pp. 129–138. ACM (2008)

2. Arenas, M., Barceló, P., Fagin, R., Libkin, L.: Locally consistent
transformations and query answering in data exchange. In: Pro-
ceedings PODS’04, pp. 229–240. ACM (2004)

3. Arenas, M., Bertossi, L.E., Chomicki, J., He, X., Raghavan, V.,
Spinrad, J.: Scalar aggregation in inconsistent databases. Theor.
Comput. Sci. 3(296), 405–434 (2003)

4. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies.
J. ACM 31(4), 718–741 (1984)

5. Bernstein, P.A., Green, T.J., Melnik, S., Nash, A.: Implementing
mapping composition. VLDB J. 17(2), 333–353 (2008)

6. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating
richer mappings. In: Proceedings SIGMOD’07, pp. 1–12. ACM
(2007)

7. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunc-
tive queries in relational data bases. In: Proceedings STOC’77, pp.
77–90. ACM Press (1977)

8. Fagin, R.: Horn clauses and database dependencies. J.
ACM 29(4), 952–985 (1982)

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange:
semantics and query answering. Theor. Comput. Sci. 336(1), 89–
124 (2005)

10. Fagin, R., Kolaitis, P.G., Nash A., Popa L.: Towards a theory of
schema-mapping optimization. In: Proceedings PODS’08, pp. 33–
42. ACM (2008)

11. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the
core. ACM Trans. Database Syst. 30(1), 174–210 (2005)

12. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.-C.: Reverse data
exchange: coping with nulls. In: Proceedings PODS ’09, pp. 23–32.
ACM (2009)

13. Gottlob, G., Pichler, R., Savenkov, V.: Optimization and normali-
zation of schema mappings. Technical Report DBAI-TR-2011-69,
Vienna University of Technology (2011)

14. Halevy, A.Y., Rajaraman, A., Ordille, J. J.: Data integration: the
teenage years. In: Proceedings VLDB’06, pp. 9–16. ACM (2006)

15. Hernich, A., Schweikardt, N.: Cwa-solutions for data exchange
settings with target dependencies. In: Proceedings PODS’07, pp.
113–122. ACM (2007)

16. Imielinski, T., Lipski, W. Jr.: Incomplete information in relational
databases. J. ACM 31(4), 761–791 (1984)

17. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive que-
ries under functional and inclusion dependencies. J. Comput. Syst.
Sci. 28(1), 167–189 (1984)

18. Kolaitis, P.G.: Schema mappings, data exchange, and metadata
management. In: Proceedings PODS’05, pp. 61–75. ACM (2005)

19. Lenzerini, M.: Data integration: a theoretical perspective. In: Pro-
ceedings PODS’02, pp. 233–246. ACM (2002)

20. Libkin, L.: Data exchange and incomplete information. In: Pro-
ceedings PODS’06, pp. 60–69. ACM Press (2006)

21. Libkin, L., Sirangelo, C.: Data exchange and schema mappings in
open and closed worlds. In: Proceedings PODS’08, pp. 139–148.
ACM (2008)

22. Marnette, B., Mecca, G., Papotti, P.: Scalable data exchange with
functional dependencies. PVLDB 3(1), 105–116 (2010)

23. Mecca, G., Papotti, P., Raunich, S.: Core schema mappings. In:
Proceedings SIGMOD’09, pp. 655–668 (2009)

24. Pichler, R., Sallinger, E., Savenkov, V.: Relaxed notions of schema
mapping equivalence revisited. In: Proceedings ICDT’11, pp. 90–
101. ACM (2011)

25. Sagiv, Y., Yannakakis, M.: Equivalences among relational expres-
sions with the union and difference operators. J. ACM 27(4), 633–
655 (1980)

26. ten Cate, B., Chiticariu, L., Kolaitis, P.G., Tan, W.C.: Laconic
schema mappings: computing the core with sql queries. PVLDB
2(1), 1006–1017 (2009)

123

	Normalization and optimization of schema mappings
	Abstract
	1 Introduction
	2 Preliminaries
	3 Normalization of s-t tgds
	4 Extension to target Egds
	5 Aggregate queries
	6 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

