
Single-Shot Epistemic Logic Program Solving

Manuel Bichler, Michael Morak, Stefan Woltran

TU Wien, Vienna, Austria

{surname}@dbai.tuwien.ac.at

Abstract
Epistemic Logic Programs (ELPs) are an extension
of Answer Set Programming (ASP) with epistemic
operators that allow for a form of meta-reasoning,
that is, reasoning over multiple possible worlds.
Existing ELP solving approaches generally rely on
making multiple calls to an ASP solver in order to
evaluate the ELP. However, in this paper, we show
that there also exists a direct translation from ELPs
into non-ground ASP with bounded arity. The re-
sulting ASP program can thus be solved in a single
shot. We then implement this encoding method, us-
ing recently proposed techniques to handle large,
non-ground ASP rules, into a prototype ELP solv-
ing system. This solver exhibits competitive per-
formance on a set of ELP benchmark instances.

1 Introduction
Epistemic Logic Programs (ELPs) are an extension of the
well-established formalism of Answer Set Programming
(ASP), a generic, fully declarative logic programming lan-
guage that allows us to encode problems in such a way that
the resulting answers (called answer sets) directly correspond
to solutions of the encoded problem [Brewka et al., 2011].
Negation in ASP is generally interpreted according to the sta-
ble model semantics [Gelfond and Lifschitz, 1988], that is, as
negation-as-failure, also called default negation. The default
negation ¬a of an atom a is true if there is no justification
for a in the same answer set, making it a “local” operator
in the sense that it is defined relative to the same answer set.
ELPs, on the other hand, extend ASP with the epistemic nega-
tion operator not that allows for a form of meta-reasoning,
that is, reasoning over multiple answer sets. Intuitively, an
epistemically negated atom not a expresses that a cannot be
proven true, that is, it is false in at least one answer set. Thus,
epistemic negation is defined relative to a collection of an-
swer sets, referred to as a world view. The main reason-
ing task for ELPs, namely checking that a world view ex-
ists, is Σ3

P -complete [Shen and Eiter, 2016], one level higher
on the polynomial hierarchy than solving ground ASP pro-
grams [Eiter and Gottlob, 1995].

Michael Gelfond [1991; 1994] recognized epistemic nega-
tion as a desired construct for ASP early on and introduced

the model operators K (“known” or “provably true”) and M
(“possible” or “not provably false”) to address this. Ka and
Ma stand for ¬not a and not¬a, respectively.
Example 1. A classical example for the use of epistemic
negation is the presumption of innocence rule

innocent(X)← not guilty(X),

namely: a person is innocent if they cannot be proven guilty.
Renewed interest in recent years has revealed several flaws

in the original semantics, and several approaches (cf. e.g.
[Gelfond, 2011; Truszczynski, 2011; Kahl, 2014; del Cerro
et al., 2015; Shen and Eiter, 2016]) aimed to refine them in
such a way that unintended world views are eliminated. In
this work, we will settle on the semantics proposed by Shen
and Eiter [2016]. The flurry of new research also led to the
development of ELP solving systems [Kahl et al., 2015; Son
et al., 2017]. Such solvers employ readily available, highly
efficient ASP systems like clingo [Gebser et al., 2012a;
2014] and WASP [Alviano et al., 2013], especially making
use of the former solver’s multi-shot solving functionality.
However, these ELP solving systems rely on ground ASP pro-
grams when calling the ASP solver, which, for complexity-
theoretic reasons, generally requires multiple calls in order to
check for world view existence.

Contributions. Our contributions in this paper are twofold:
. Firstly, we propose a novel translation from ELPs to ASP
programs using large non-ground ASP rules, such that the
ELP can be solved by an ASP solving system in a single
shot. This is done via a recently proposed encoding technique
[Bichler et al., 2016b] that uses large ASP rules to formulate
complex checks. This technique builds on a result by Eiter
et al. [2007] that states that evaluating non-ground ASP pro-
grams with bounded predicate arity is Σ3

P -complete, which
matches the complexity of evaluating ELPs. Our proposed
translation is therefore optimal from a complexity-theoretic
point of view. From a practical point of view, such an encod-
ing avoids multiple calls to the ASP solver. State-of-the-art
systems use sophisticated heuristics and learning, and multi-
ple calls might result in a loss of knowledge about the prob-
lem instance, which the solver has already learned.

We further discuss how our encoding needs to be con-
structed in order to be useful in practice. In particular, in
current ASP systems, non-ground ASP programs first need

to be grounded, that is, all variables need to be replaced by
all allowed combinations of constants. Since our encoding
makes use of large non-ground rules, a naive grounding will
often not terminate, since there may be hundreds or thousands
of variables in a rule. However, as proposed in [Bichler et al.,
2016b], we make use of the lpopt rule decomposition tool
[Bichler et al., 2016a] that splits such large rules into smaller
ones that are more easily grounded, by making use of the
concept of treewidth and tree decompositions [Bodlaender,
1993]. To use this tool to its full potential, the large rules we
use in our encoding must be constructed carefully, in order
for lpopt to split them up optimally.
. Secondly, we propose a prototype implementation of our
ELP-to-ASP rewriting approach and combine it with the
state-of-the-art ASP solving system clingo [Gebser et al.,
2014] in order to evaluate its performance. We compare our
system against EP-ASP [Son et al., 2017] on different bench-
marks found in the literature. Our system shows competitive
performance on these benchmarks, in particular on instances
with good structural properties.

2 Preliminaries
Answer Set Programming (ASP). A ground logic program
(also called answer set program, ASP program, or simply pro-
gram) is a pair Π = (A,R), whereA is a set of propositional
(i.e. ground) atoms andR is a set of rules of the form

a1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an; (1)

where the comma symbol stands for conjunction, n ≥ m ≥ l
and ai ∈ A for all 1 ≤ i ≤ n. Each rule r ∈ R of form (1)
consists of a head H (r) = {a1, . . . , al} and a body given by
B+(r) = {al+1, . . . , am} and B−(r) = {am+1, . . . , an}.
A literal ` is either an atom a or its (default) negation ¬a.
A literal ` is true in a set of atoms I ⊆ A if ` = a and
a ∈ I , or ` = ¬a and a 6∈ I; otherwise ` is false in I . A
set M ⊆ A is a called a model of r if B+(r) ⊆ M together
with B−(r) ∩ M = ∅ implies that H (r) ∩ M 6= ∅. We
denote the set of models of r by models(r) and the models
of a logic program Π = (A,R) are given by models(Π) =⋂

r∈R models(r). The GL-reduct ΠI of a ground logic pro-
gram Π with respect to a set of atoms I ⊆ A is the program
ΠI = (A, {H (r)← B+(r) | r ∈ R,B−(r) ∩ I = ∅}).
Definition 2. [Gelfond and Lifschitz, 1988] M ⊆ A is an
answer set of a program Π if (1) M ∈ models(Π) and (2)
there is no subset N ⊂M such that N ∈ models(ΠM).

The set of answer sets of a program Π is denoted AS (Π).
The consistency problem of ASP (decide whether for given
Π, AS (Π) 6= ∅) is Σ2

P -complete [Eiter and Gottlob, 1995].
General non-ground logic programs differ from ground

logic programs in that variables may occur in rules. Such
rules are ∀-quantified first-order implications of the form
H1 ∨ · · · ∨Hk ← P1, . . . , Pn,¬N1, . . . ,¬Nm where Hi, Pi

and Ni are (non-ground) atoms. A non-ground atom A is of
the form p(X, c) and consists of a predicate name p, as well
as a sequence of variables X and constants c from a domain
∆, with |X| + |c| being the arity of p. Let var(A) denote
the set of variables X in a non-ground atom A. This notation

naturally extends to sets. We will denote variables by capi-
tal letters, constants and predicates by lower-case words. A
non-ground rule can be seen as an abbreviation for all possi-
ble instantiations of the variables with domain elements from
∆. This step is usually explicitly performed by a grounder
that transforms a (non-ground) logic program into a set of
ground rules of form (1). Note that in general, such a ground
program can be exponential in the size of the non-ground pro-
gram. However, for non-ground programs of bounded arity,
the consistency problem is Σ3

P -complete [Eiter et al., 2007].

Epistemic Logic Programs. A ground epistemic logic pro-
gram (ELP) is a pair Π = (A,R), where A is a set or propo-
sitional atoms andR is a set of rules of the following form:

a1 ∨ · · · ∨ ak ← `1, . . . , `m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn,

where each ai is an atom, each `i is a literal, and each
ξi is an epistemic literal, that is, a formula not `, where
not is the epistemic negation operator, and ` is a literal.
W.l.o.g. we assume that no atom appears twice in a rule.
Let elit(r) denote the set of all epistemic literals occur-
ring in a rule r ∈ R. This notation naturally extends to
programs. Let H (r) = {a1, . . . , ak}, and let B(r) =
{`1, . . . , `m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn}, that is, the set of
elements appearing in the rule body.

In order to define the main reasoning tasks for ELPs, we re-
call the notion of the epistemic reduct [Shen and Eiter, 2016].
Let Φ ⊆ elit(Π) (called a guess). The epistemic reduct ΠΦ

of the program Π = (A,R) w.r.t. Φ consists of the rules
{r¬ | r ∈ R}, where r¬ is defined as the rule r with all epis-
temic literals not ` in Φ (resp. in elit(Π) \ Φ) replaced by >
(resp. ¬`). Note that ΠΦ is a logic program without epistemic
negation1. This leads to the following, central definition.

Definition 3. Let Φ be a guess. The set M = AS (ΠΦ) is
called a candidate world view of Π iff

1. M 6= ∅,
2. for each epistemic literal not ` ∈ Φ, there exists an an-

swer set M ∈M wherein ` is false, and

3. for each epistemic literal not ` ∈ elit(Π) \ Φ, it holds
that ` is true in each answer set M ∈M.

Example 4. Let Π be the following ELP, withR = {r1, r2}:

r1 : p← not q

r2 : q ← not p

ELP Π has two candidate world views: (1) Φ = {not q} with
AS (ΠΦ)= {{p}}; (2) Φ = {not p} with AS (ΠΦ)= {{q}}.

The main reasoning task we treat in this paper is the world
view existence problem (or ELP consistency), that is, given an
ELP Π, decide whether a candidate world view exists. This
problem is known to be ΣP

3 -complete [Shen and Eiter, 2016].

Tree Decompositions. A tree decomposition of a graph G =
(V,E) is a pair T = (T, χ), where T is a rooted tree and χ
is a labelling function over nodes t, with χ(t) ⊆ V , such that
the following holds: (i) for each v ∈ V there is a node t in T

1We interpret double negation according to [Faber et al., 2011].

such that v ∈ χ(t); (ii) for each {v, w} ∈ E there is a node t
in T such that {v, w} ⊆ χ(t); and (iii) for all nodes r, s, and t
in T , where s lies on the path from r to t, χ(r)∩χ(t) ⊆ χ(s).
The width of a tree decomposition is defined as the maximum
cardinality of χ(t) minus one. The treewidth of a graph G is
the minimum width over all tree decompositions of G. Trees
have treewidth 1, cliques of size k have treewidth k. Finding a
tree decomposition of minimal width is NP-hard in general.

3 Single-Shot ELP Solving
In this section, we provide our novel translation for solving
ELPs via a single call to an ASP solving system. The goal is
to transform a given ELP Π to a non-ground ASP program Π′

with predicates of bounded arity, such that Π is consistent (i.e.
it has a candidate world view) iff Π′ has at least one answer
set. A standard ASP solver can then decide the consistency
problem for the ELP Π in a single call, by solving Π′.

3.1 Reducing ELPs to ASP Programs
The reduction is based on an encoding technique proposed in
[Bichler et al., 2016b], which uses large, non-ground rules.
Given an ELP Π, the ASP program Π′ will roughly be con-
structed as follows. Π′ contains a guess part that chooses a set
of epistemic literals from elit(Π), representing a guess Φ for
Π. Then, the check part verifies that, for Φ, a candidate world
exists. In all, the ASP program Π′ consists of five parts:

Π′ = Π′
facts ∪Π′

guess ∪Π′
check1

∪Π′
check2

∪Π′
check3

,

where the sub-program Π′
facts is a set of facts representing

the ELP Π, and Π′
checki

represents the part of the program
that checks Condition i of Definition 3. We now proceed to
the construction of the program Π′. Let Π = (A,R) be the
ELP to reduce from. To ease notation, let A = {a1, . . . , an}.

The set of facts Π′
facts . Π′

facts represents basic knowledge-
about the ELP Π, plus some auxiliary facts, and is given as:
• atom(a), for each atom a ∈ A;
• elit(`), for each epistemic literal not ` ∈ elit(Π)2;
• leq(0, 0), leq(0, 1), and leq(1, 1), representing the less

or equal relation for boolean values; and
• or(0, 0, 0), or(0, 1, 1), or(1, 0, 1), and or(1, 1, 1), rep-

resenting the boolean relation or.

Sub-Program Π′
guess . This part of the program consists of

a single, non-ground rule that guesses a subset of the epis-
temic literals (stored in predicate g) as follows:

g(L, 1) ∨ g(L, 0)← elit(L).

Shorthands. Before defining the three check parts of the
program, we will introduce some useful shorthands which
will be used at several occassions. To this end, we use a con-
text identifier C. We first define the following:

HC
val(A) ≡ vC(A, 1) ∨ vC(A, 0),

2Note that we use the literal ` as an ASP constant.

that is, HC
val(A) guesses a truth assignment for some variable

A and stores it in relation vC . We will often use variables
X = {X1, . . . ,Xn} or Y = {Y1, . . . ,Yn} to represent a
subset M of A, where assigning Xi to 1 characterizes ai ∈
M , and Xi = 0 otherwise. Let

BC
val(X) ≡

∧
ai∈A

vC(ai,Xi),

that is, BC
val(X) extracts the truth assignment from relation

vC into the variables X as described above. Finally, for some
rule r in Π, we define a formula Br

sat(X,Y,S) that checks
whether the rule r is satisfied in the epistemic reduct ΠΦ

w.r.t. the guess Φ encoded in the relation g , when the neg-
ative body (resp. positive body and head) is evaluated over
the set of atoms encoded by X (resp. Y). If the rule is sat-
isfied, Br

sat(X,Y, 1) should hold, and Br
sat(X,Y, 0) other-

wise. This is done as follows. Let r contain the variables
{ai1 , . . . , aim} (recall that no atom appears twice in a rule),
where i1, . . . , im ∈ {1, . . . , n}. For ease of notation, we will
use a four-ary or relation, which can easily be split into two
of our three-ary or atoms using a helper variable T :

or(W ,X ,Y ,Z)← or(W ,X ,T), or(T ,Y ,Z).

The following is the central building block of our reduction:

Br
sat(X,Y,Rm) ≡ R0 = 0,

∧
aij

∈H (r)

or(Rj−1,Yij ,Rj),

∧
aij

∈B(r)

or(Rj−1, 1−Yij ,Rj),
∧

¬aij
∈B(r)

or(Rj−1,Xij ,Rj),

∧
not aij

∈B(r)

g(aij ,Nj), or(Nj , 1−Xij ,Tj), or(Rj−1, 1−Tj ,Rj),

∧
not¬aij

∈B(r)

g(¬aij ,Nj), or(Nj ,Yij ,Tj), or(Rj−1, 1−Tj ,Rj),

∧
¬not aij

∈B(r)

g(aij ,Nj), or(Rj−1,Nj , 1−Yij ,Rj),

∧
¬not¬aij

∈B(r)

g(¬aij ,Nj), or(Rj−1,Nj ,Xij ,Rj).

For a rule r, each big conjunction in the above formula
encodes a reason for r to be satisfied. For example, the fifth
line encodes the fact that rule r is true if the disjunct ¬not aij
is not satisfied, that is, if the epistemic literal not aij is part of
the guess Φ, or the atom aij is false (represented by 1−Yij).
Each disjunct of rule r is evaluated in this way, and the results
are connected via the or relation. Therefore, Rm will be 1 if
r is satisfied, and 0 otherwise, as desired. Finally, we define
Bss(X,Y), which makes sure that the variables Y identify a
strict subset of the atoms identified by X. Let Bss(X,Y) ≡

N0 = 0,Nn = 1,
∧

ai∈A
leq(Yi,Xi), or(Ni−1,Xi−Yi,Ni).

We can now proceed with the remainder of our reduction.

Sub-Program Π′
check1

. This part of the program needs to
check that, given the guess Φ made in Π′

guess , there exists
at least one answer set of the epistemic reduct ΠΦ, as per
Definition 3(1). Therefore, according to Definition 2, we need
to find a set M ⊆ A, such that (1) M is a model of ΠΦ, and
(2) there is no proper subset of M that is a model of the GL-
reduct (ΠΦ)M . Π′

check1
contains the following rules:

• Hcheck1

val (A)← atom(A);

• ⊥ ← Bcheck1

val (X), Br
sat(X,X, 0), for each r ∈ R; and

• ⊥ ← Bcheck1

red .

The first rule guesses a truth assignment for all atoms. The
second rule verifies that there is no rule in ΠΦ that is violated
by the candidate answer set M , represented by the variables
X, guessed by the first rule. BC

red checks whether a subset of
M is a model of the GL-reduct (ΠΦ)M . To this end, let

BC
red ≡ BC

val(X), Bss(X,Y),
∧
r∈R

Br
sat(X,Y, 1).

The last big conjunction in BC
red makes sure that the subset

N ⊂ M identified by the variables Y is indeed a model of
every rule in the GL-reduct (ΠΦ)M . This completes Π′

check1
.

Sub-Program Π′
check2

. This part needs to check that, for
every epistemic literal not ` ∈ Φ, the epistemic reduct ΠΦ

has some answer set wherein ` is false. Π′
check2

contains the
following rules and facts, for each epistemic literal not ` ∈
elit(Π) (used as the context C so guesses are independent):
• H`

val(A)← atom(A), g(`, 1);
• v`(a, η), where η = 1 if ` = ¬a, or η = 0 if ` = a;
• ⊥ ← B`

val(X), Br
sat(X,X, 0), for each r ∈ R; and

• ⊥ ← B`
red .

These rules guess, for each epistemic literal not ` ∈ Φ, a
candidate answer set M wherein ` is false, and then verify
that M is indeed an answer set, using the same technique as
in Π′

check1
. This ensures Condition 2 of Definition 3.

Sub-Program Π′
check3

. Finally, this part needs to check
that, for every epistemic literal not ` ∈ elit(Π) \ Φ, every
answer set of ΠΦ satisfies `. The construction makes use of
the technique of saturation [Eiter and Gottlob, 1995]:

• Hcheck3

val (A)← atom(A);
• vcheck3

(A, 0)← sat , atom(A);
• vcheck3

(A, 1)← sat , atom(A); and
• ⊥ ← ¬sat .
This setup checks that, for every candidate answer set M

guessed in the first rule, the atom sat is derived. Since we are
only interested in answer sets, we first check that M is indeed
one, using the following rules, similarly to Π′

check1
:

• sat ← Bcheck3

val (X), Br
sat(X,X, 0), for each r ∈ R; and

• sat ← Bcheck3

red .

It now remains to check that in each answer set M (that
is, where sat has not been derived yet) all epistemic literals
not ` are either in Φ, or otherwise ` is true in M . This is done
by adding the following rule to Π′

check3
:

sat ←
∧

not a∈elit(Π)

g(a,Na), vcheck3 (a,Xa), or(Na,Xa, 1),

∧
not¬a∈elit(Π)

g(¬a,N¬
a), vcheck3 (a,X

¬
a), or(N¬

a , 1−X¬
a , 1).

This completes the reduction. The following result states
that the above reduction is polynomial and correct.
Theorem 5. Given an ELP Π, the reduction above runs in
time O(e ·n), where n is the size of Π and e = |elit(Π)|, uses
predicates of arity at most three, and is correct.

Proof. (Idea). Correctness follows by construction; it can be
verified that each of the three parts of the constructed program
Π′ indeed ensures precisely the three conditions that define a
candidate world view. Each answer set A of Π′ is a witness
for the fact that a guess Φ ⊆ elit(Π) encoded in A indeed
gives rise to a candidate world view. Predicates of arity at
most three are used if the four-ary or relation is not materi-
alized as an actual relation in ASP, but viewed as a shorthand
for two connected ternary or relations. The reduction’s run-
time (and output size) can be shown to be in O(e·n) by noting
the fact that the construct Bred is of size linear in n (it pre-
cisely encodes each rule using the or predicates). Bred is then
use once for each epistemic literal in Π (cf. check 2).

Note that the above theorem shows that our reduction is
indeed worst-case optimal as claimed in Section 1: check-
ing consistency of non-ground, fixed-arity ASP programs is
Σ3

P -complete, as is checking world-view existence for ELPs.
Example 6. Recall program Π = (A,R) from Example 4.
LetA = {a1, a2}, where a1 = p and a2 = q. Let rule r2 ∈ R
contain the atoms {ai1 , ai2}, where i1 = 2 and i2 = 1. The
core construct in our construction is Br

sat(·, ·, ·). For rule r2,
we have Br2

sat(X1,X2,Y1,Y2, R2) ≡
or(0,Y2,R1), g(p,N2), or(N2, 1−X1,T2), or(R1, 1−T2,R2).

3.2 Using the Reduction in Practice
As we have seen, using the construction in the previous sub-
section, we can solve the consistency problem for a given
ELP via a single call to an ASP solving system. However,
when trying this in practice, the performance is less than opti-
mal, mainly for the following reason. At several points in the
construction, large non-ground rules are used (i.e. where BC

red
appears in a rule body). As noted in Section 2, these rules
need to be grounded, but may contain hundreds or thousands
of variables, which need to be replaced by all possible com-
binations of constants; a hopeless task for ASP grounders.

However, as noted in [Bichler et al., 2016b], such large
rules can often be decomposed into smaller, more manage-
able rules, using the lpopt tool [Bichler et al., 2016a]. This
tool roughly works as follows: (1) compute a rule graph Gr

for each non-ground rule r, where there is a vertex for each
variable V in r, and there is an edge between V1 and V2,

Figure 1: Creating a grid from chains.

if the two variables appear together in an atom of r; then
(2) compute a tree decomposition of Gr of minimal width;
and finally, (3) in a bottom-up manner, output a rule for each
node in the tree decomposition. The resulting rules each con-
tain only as many variables as the treewidth of Gr (plus one),
and, together, are equivalent to the original rule r. After this
rule decomposition step, grounding now becomes much eas-
ier, since the number of variables in each rule is reduced.
Note that, since finding optimal tree decompositions is NP-
hard, lpopt employs heuristics to find good decompositions.

In our construction, BC
red stands for a long rule body that

basically encodes the entire input ELP Π. Each atom ai in Π
is represented by the two variables Xi and Yi. If we represent
Π as a graph GΠ, where each atom ai is a vertex, and there
is an edge between two atoms if they appear together in a
rule in Π, then this graph structure can be found (as a minor)
in the rule graph of BC

red . However, in addition, BC
red also

adds a series of or(·, ·, ·) atoms (via Bss(X,Y)), that intro-
duce additional connections in the rule graph of BC

red . These
connections may increase the treewidth substantially. In fact,
even if GΠ has a treewidth of 1, by introducing the additional
connections in a bad way, the treewidth may increase arbitrar-
ily: imagine that GΠ is a chain, depicted in black in Figure 1,
and imagine the or(·, ·, ·)-chain from Bss(X,Y) is inserted
into GΠ, illustrated in pink. The treewidth now depends on
the chain’s length, and lpopt can no longer split the rule well.

The solution to this problem is the following. Instead of
constructing Bss(X,Y) as given in the construction above,
first perform a tree decomposition on GΠ. Then, construct
Bss(X,Y) along this tree decomposition in such a way that
the or(·, ·, ·) atoms do not introduce additional edges into
GΠ, therefore preserving the treewidth of GΠ. With this tech-
nique, the treewidth of BC

red only depends on the treewidth of
GΠ (and thus on the actual structure of Π), and not on the size
of Π. This in turn allows lpopt to work efficiently.

3.3 Discussion
As we have seen, the reduction proposed above allows us to
solve ELPs via a single call to an ASP solving system. How-
ever, our encoding also has several other properties, which
make it very flexible for use with, for example, different ASP
semantics, or harder problems. A brief discussion follows.
Other ASP Semantics. Apart from the original semantics
for ASP (called stable model semantics, [Gelfond and Lif-
schitz, 1988; 1991]), several different semantics have been
proposed that investigate how to interpret more advanced
constructs in ASP, like double negation, aggregates, opti-
mization, and more [Lifschitz et al., 1999; Pearce, 2006;
Pelov et al., 2007; Ferraris et al., 2011; Faber et al., 2011;
Shen et al., 2014]. Epistemic reducts may contain double
negation, and we have opted to use the FLP semantics of
[Faber et al., 2011], as used in [Shen and Eiter, 2016], to
interpret this. The actual interpretation of double negation is

encoded in the Br
sat(·, ·) shorthand defined in our reduction.

This construction is very flexible and can easily be modified
to use different ASP semantics (e.g. [Lifschitz et al., 1999]).
Enumeration of World Views. Modern ASP systems like
clasp [Gebser et al., 2012b] contain several advanced fea-
tures. One such feature is projection: given a set of atoms (or
relations), the solver will output answer sets where all other
atoms are projected away, and will also guarantee that there
are no repetitions (even if multiple answer sets with the same
assignment on the projected atoms exist), while still maintain-
ing efficiency. This can be used to enumerate candidate world
views by projecting away all relations in our encoding, except
for g(·) and vcheck1 (·). When enumerating all projected an-
swer sets in this way, our encoding yields all guesses together
with their candidate world views (when grouped by g(·)).

4 The selp System
We implemented the reduction in the previous section as
part of the single shot ELP solving toolbox selp, available
at goo.gl/U1gmQu. In addition, the toolbox features a
grounder for ELPs and a grouping script which groups an-
swer sets of the reduction into candidate world views (allow-
ing for enumeration). The tools are implemented in python
and depend on the parser generator LARK3, the rule decom-
position tool lpopt [Bichler et al., 2016a], the tree decom-
position tool htd_main [Abseher et al., 2017], and the ASP
grounder gringo [Gebser et al., 2011].
Input Formats. The selp solver reads the EASP-not file
format, which is a restriction of the ASP input language of
gringo to plain ground logic programs as defined in Section 2,
extended with the not operator for epistemic negation.
This allows us to encode ELPs as defined in Section 2. selp
also supports EASP-KM, defined by adding the operators K$
and M$ instead of not. By allowing variables in body el-
ements, both formats also have a non-ground version. The
toolbox offers scripts to translate between the two formats.
Toolbox. We briefly present the main building blocks of selp.

• easpGrounder.py takes as input a non-ground EASP-not
program and outputs its equivalent ground form by rewriting
it into an ASP program that the gringo grounder can under-
stand and ground. This is done by encoding epistemic nega-
tion as predicate names and, after grounding, re-introducing
epistemic negation where a placeholder predicate appears.
Additionaly, easpGrounder.py supports arithmetics and the
sorts format [Kahl et al., 2015] as input.

• easp2asp.py is selp’s key component. It takes a ground
EASP-not program, and performs the reduction given in Sec-
tion 3.1, also adhering to the practical considerations pre-
sented in Section 3.2, and finally outputs the resulting non-
ground logic program in the syntax of gringo. Optionally,
additional clasp directives are generated to allow for enumer-
ation as described in Section 3.3.

• groupWorldViews.py takes as input clasp’s output in
JSON format, groups the answer sets into candidate world

3https://github.com/erezsh/lark

5 10 15 20 25
10−2

10−1

100

101

102

103

104

number of students

tim
e

[s
ec

]
selp

EP-ASP

(a) Scholarship Eligibility

5 10 15 20 25
10−1

100

101

102

103

plan length

tim
e

[s
ec

]

selp
EP-ASP

(b) Yale Shooting

Figure 2: Benchmark results. Missing points indicate timeouts.

views according to their g(·) atoms, and outputs them in a
human-readable format.

Usage. Suppose the file problem.easp contains a non-
ground ELP encoding of a problem of interest and the file
instance.easp contains a problem instance. In order to
output all candidate world views, one would use the following
command (flags -pas and --project enable projection of
answer sets onto relevant predicates only. -n0 tells clasp to
compute all answer sets, and --outf=2 to print in JSON
format. lpopt is used to decompose long rule bodies. The
--sat-prepro=3 flag is recommended by lpopt):
cat problem.easp instance.easp |
easpGrounder.py -sELP | easp2asp.py -pas |
lpopt | gringo | clasp -n0 --outf=2 --project
--sat-prepro=3 | groupWorldViews.py

5 Experimental Evaluation
We tested our system selp against the state-of-the-art ELP
solver, EP-ASP [Son et al., 2017], using three test sets. For
every test set, we measured the time it took to solve the con-
sistency problem. For selp, clasp was stopped after finding
the first answer set. For EP-ASP, search was terminated after
finding the first candidate world view4. Note that a single an-
swer set of the selp system is enough to establish consistency
of an input ELP. EP-ASP needs to compute a full candidate
world view to be able to prove consistency.

Experiments were run on a 2.1GHz AMD Opteron 6272
system with 224 GB of memory. Each process was assigned
a maximum of 14 GB of RAM. For EP-ASP, we used the
required clingo 4.5.3, since newer versions are incompatible
with the solver. For selp, we used clingo 5.2.2, htd_main
1.2.0, and lpopt 2.2. The time it took EP-ASP to rewrite the
input to its own internal format was not measured. EP-ASP
was called with the preprocessing option for brave and cau-
tious consequences on, since it always ran faster this way.
The selp time is the sum of running times of its components.
Benchmark Instances. We used three types of benchmarks,
two coming from the ELP literature and one from the QSAT
domain that contains structures of low treewidth5.
• Scholarship Eligibility (SE). This set of non-ground ELP

programs is shipped together with EP-ASP. Its instances en-
code the scholarship eligibility problem for 1 to 25 students.

4Note that to have a fair comparison we disabled the subset-
maximality check on the guess that EP-ASP performs by default.

5The benchmark archive can be found here: goo.gl/bW1PoN

• Yale Shooting (YS). This test set consists of 25 non-
ground ELP programs encoding a simple version of the Yale
Shooting Problem, a conformant planning problem: the only
uncertainty is whether the gun is initially loaded or not, and
the only fluents are the gun’s load state and whether the turkey
is alive. Instances differ in the time horizon. We follow the
ELP encoding by Kahl et al. [2015].
• Tree QBFs (TQ). The hardness proof for ELP consis-

tency [Shen and Eiter, 2016] relies on a reduction from
certain QBFs with three quantifier blocks. We apply
this reduction to the 14 “Tree” instances of QBFEVAL’16
[Pulina, 2016], available at http://www.qbflib.org/
family_detail.php?idFamily=56, splitting each
instance’s variables into three random quantifier blocks.

Results. The results for the first two sets are shown in Fig-
ure 2. selp solves all instances from (SE) within 30 seconds,
while EP-ASP only solves 17 within the time limit of 8 hours.
For (YS), on the other hand, selp is able to solve only 6 in-
stances within the time limit of 30 minutes, whereas EP-ASP
can solve 17. Finally, for (TQ), selp can solve 6 of the 14
instances within the time limit of 12 hours, whereas EP-ASP
was unable to solve any instances at all.

These results confirm that selp is highly competitive on
well-structured problems: in the (SE) instances, knowledge
about students is not interrelated, and hence the graph GΠ

of the ground ELP Π consists of one component for each
student, thus having constant treewidth. The (TQ) instances
keep their constant treewidth thanks to the fact that both the
reduction from QBF to ELP and from ELP to non-ground
ASP (cf. Section 3.2) preserve the low treewidth of the orig-
inal QBF instance. Different from selp, EP-ASP is not de-
signed to exploit such structural information of ELPs and,
consequently, performs worse than selp in these benchmarks.
On the other hand, (YS) contains instances of high treewidth,
even though it does not depend on the horizon. EP-ASP is
therefore able to outperform selp on such instances. A similar
observation can be made for the “Bomb in the Toilet” prob-
lem, as benchmarked by Son et al. [2017], which inherently
contains a huge clique structure. selp is not designed to solve
such instances, and is therefore most suited for ELPs of low
treewidth, where it efficiently exploits the problem structure.

6 Conclusions
In this paper, we have seen that ELPs can be encoded into
ASP programs using long non-ground rules, such that a sin-
gle call to an ASP solver is sufficient to evaluate them. A
prototype ELP solver implementation, selp, preforms partic-
ularly well on problems whose internal structure is of low
treewidth. A combined solver that either calls selp or another
state-of-the-art solver based on the treewidth of the input may
therefore lead to even better overall performance.

Anoter topic for future work is that, under the FLP seman-
tics, checking whether a given atom a is true in all candi-
date world views with a subset-maximal guess Φ is known to
be Σ4

P -complete [Shen and Eiter, 2016]. To solve this prob-
lem, advanced optimization features of state-of-the-art ASP
solvers could allow us to encode this subset-maximality con-
dition, while leaving the core of our encoding unchanged.

Acknowledgements. This work was funded by the Austrian
Science Fund (FWF), grant number Y698.

References
[Abseher et al., 2017] Michael Abseher, Nysret Musliu, and

Stefan Woltran. htd - A free, open-source framework for
(customized) tree decompositions and beyond. In Proc.
CPAIOR, pages 376–386, 2017.

[Alviano et al., 2013] Mario Alviano, Carmine Dodaro,
Wolfgang Faber, Nicola Leone, and Francesco Ricca.
WASP: A native ASP solver based on constraint learning.
In Proc. LPNMR, pages 54–66, 2013.

[Bichler et al., 2016a] Manuel Bichler, Michael Morak, and
Stefan Woltran. lpopt: A rule optimization tool for an-
swer set programming. In Proc. LOPSTR, pages 114–130,
2016.

[Bichler et al., 2016b] Manuel Bichler, Michael Morak, and
Stefan Woltran. The power of non-ground rules in answer
set programming. TPLP, 16(5-6):552–569, 2016.

[Bodlaender, 1993] Hans L. Bodlaender. A tourist guide
through treewidth. Acta Cybern., 11(1-2):1–21, 1993.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[del Cerro et al., 2015] Luis Fariñas del Cerro, Andreas
Herzig, and Ezgi Iraz Su. Epistemic equilibrium logic.
In Proc. IJCAI, pages 2964–2970, 2015.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob.
On the computational cost of disjunctive logic program-
ming: Propositional case. Ann. Math. Artif. Intell.,
15(3-4):289–323, 1995.

[Eiter et al., 2007] Thomas Eiter, Wolfgang Faber, Michael
Fink, and Stefan Woltran. Complexity results for answer
set programming with bounded predicate arities and impli-
cations. Ann. Math. Artif. Intell., 51(2-4):123–165, 2007.

[Faber et al., 2011] Wolfgang Faber, Gerald Pfeifer, and
Nicola Leone. Semantics and complexity of recursive
aggregates in answer set programming. Artif. Intell.,
175(1):278–298, 2011.

[Ferraris et al., 2011] Paolo Ferraris, Joohyung Lee, and
Vladimir Lifschitz. Stable models and circumscription.
Artif. Intell., 175(1):236–263, 2011.

[Gebser et al., 2011] Martin Gebser, Roland Kaminski, Arne
König, and Torsten Schaub. Advances in gringo series 3.
In Proc. LPNMR, pages 345–351, 2011.

[Gebser et al., 2012a] Martin Gebser, Roland Kaminski,
Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Morgan & Claypool, 2012.

[Gebser et al., 2012b] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187:52–89, 2012.

[Gebser et al., 2014] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. clingo = ASP +
control: Preliminary report. In ICLP Tech.Comm., 2014.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proc. ICLP/SLP, pages 1070–
1080, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Comput., 9(3/4):365–386, 1991.

[Gelfond, 1991] Michael Gelfond. Strong introspection. In
Proc. AAAI, Volume 1, pages 386–391, 1991.

[Gelfond, 1994] Michael Gelfond. Logic programming and
reasoning with incomplete information. Ann. Math. Artif.
Intell., 12(1-2):89–116, 1994.

[Gelfond, 2011] Michael Gelfond. New semantics for epis-
temic specifications. In Proc. LPNMR, pages 260–265,
2011.

[Kahl et al., 2015] Patrick Thor Kahl, Richard Watson, Ev-
genii Balai, Michael Gelfond, and Yuanlin Zhang. The
language of epistemic specifications (refined) including a
prototype solver. J. Log. Comput., 25, 2015.

[Kahl, 2014] Patrick Thor Kahl. Refining the Semantics for
Epistemic Logic Programs. PhD thesis, Texas Tech Uni-
versity, Texas, USA, 2014.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang,
and Hudson Turner. Nested expressions in logic programs.
Ann. Math. Artif. Intell., 25(3-4):369–389, 1999.

[Pearce, 2006] David Pearce. Equilibrium logic. Ann. Math.
Artif. Intell., 47(1-2):3–41, 2006.

[Pelov et al., 2007] Nikolay Pelov, Marc Denecker, and
Maurice Bruynooghe. Well-founded and stable semantics
of logic programs with aggregates. TPLP, 7(3):301–353,
2007.

[Pulina, 2016] Luca Pulina. The ninth QBF solvers evalua-
tion - preliminary report. In Proc. QBF, 2016.

[Shen and Eiter, 2016] Yi-Dong Shen and Thomas Eiter.
Evaluating epistemic negation in answer set programming.
Artif. Intell., 237:115–135, 2016.

[Shen et al., 2014] Yi-Dong Shen, Kewen Wang, Thomas
Eiter, Michael Fink, Christoph Redl, Thomas Krennwall-
ner, and Jun Deng. FLP answer set semantics without cir-
cular justifications for general logic programs. Artif. In-
tell., 213:1–41, 2014.

[Son et al., 2017] Tran Cao Son, Tiep Le, Patrick Thor Kahl,
and Anthony P. Leclerc. On computing world views of
epistemic logic programs. In Proc. IJCAI, pages 1269–
1275, 2017.

[Truszczynski, 2011] Miroslaw Truszczynski. Revisiting
epistemic specifications. In Logic Programming, Knowl-
edge Representation, and Nonmonotonic Reasoning - Es-
says Dedicated to Michael Gelfond on the Occasion of His
65th Birthday, 2011.

