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GC@60 Workshop in Genoa, December 2016 

From “Reflections on Georg Gottlob” in the Gottlobiana volume: 

 

“When one reflects on Georg's scientific output, one sees clearly 

that his work is characterized by scholarship of the highest 

caliber, penetrating conceptual insights, technical prowess, 

impeccable taste, and a unique ability to obtain definitive results.  

 

Georg never settles for partial results; instead, he is always after 

complete classifications, full taxonomies, and crisp boundaries 

that completely settle the question at hand.” 
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Two Examples of the Quest for Definitive Results 

• The Complexity of Acyclic Conjuctive Queries 

     Georg Gottlob, Nicola Leone, Francesco Scarcello 

     JACM 2001 (67 pages) 

– Preliminary version in FOCS 1998 

 

• Efficient Core Computation in Data Exchange 

    Georg Gottlob and Alan Nash 

    JACM 2008 (49 pages) 

– Preliminary versions in: 

    PODS 2005 (Georg Gottlob) 

    PODS 2006 (Georg Gottlob and Alan Nash) 
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Conjunctive Query Evaluation 

 

• The Conjunctive Query Evaluation Problem (CQE):  

     Given a Boolean conjunctive query Q and a database D,  is  

     Q(D) = 1?  (i.e., does D satisfy Q?) 

 

• Fact: CQE is NP-complete 

    G has a clique of size k if and only if Qk(G) = 1, where 

                        Qk  :-  9 x1 …9 xk Æi  ≠ j E(xi,xj) 
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The Pursuit for Islands of Tractability 

• Extensive pursuit of tractable cases of CQE by the database 

theory community and the constraint satisfaction community 

              

                 Conjunctive Query Evaluation             

                               ´                      (Chandra-Merlin, 1977) 

                 Homomorphism Problem  

                               ´                          (Feder-Vardi, 1993) 

                 Constraint Satisfaction Problem  

 

• In 1981, Mihalis Yannakakis discovered a large and useful 

tractable case of CQE by showing that CQE is tractable for 

Acyclic Conjunctive Queries. 
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Acyclic Conjunctive Queries 

Definition: A conjunctive query Q is acyclic if it has a join tree. 

 

Definition: Let Q be a conjunctive query of the form 

       Q(x) :  9 y (R1(z1) Æ R2(z2) Æ ... Æ Rm(zm)). 

A join tree for Q is a tree T such that 

– The nodes of T are the atoms Ri(zi), 1· i · m, of Q. 

– For every variable w occurring in Q, the set of the nodes of 

    T that contain w forms a subtree of T;  

    in other words, if a variable w occurs in two different atoms 

    Rj(zj) and Rk(zk) of Q, then it occurs in each atom on the  

    unique path of T joining Rj(zj) and Rk(zk) . 
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Acyclic Conjunctive Queries 

Q( ) :   9 x y z u v w  

               (A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w)) 

 
D(z,u,v) 

C(y,z,v) F(u,v,w) 

A(x,y,z) B(y,v) 

Join Tree for Q 
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Acyclic Conjunctive Queries 

Q( ) :  9 x y z u v w  

               (A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w)) 

 
D(z,u,v) 

C(y,z,v) F(u,v,w) 

A(x,y,z) B(y,v) 

Join Tree for Q 
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Yannakakis’ PTIME-Algorithm for Acyclic CQE 

Dynamic Programming Algorithm 

Input:  Acyclic Boolean conjunctive query Q, database D 

1. Construct a join tree T of Q 

2. Populate the nodes of T with the matching relations of D. 

3. Traverse the tree T bottom up: 

   For each node Rk(zk), compute the semi-joins of the 

   (current) relation in the node Rk(zk) with the (current) 

   relations in the children of the node Rk (zk). 

4. Examine the resulting relation R at the root of T 

 If R is non-empty, then output Q(D) = 1 (D satisfies Q). 

 If R is empty, then output Q(D) = 0 (D does not satisfy Q). 
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Yannakakis’ PTIME-Algorithm for Acyclic CQE 

Q( ) :  9 x y z u v w  

               (A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w)) 

 
D(z, u, v) 

C(y, z,v) F(u, v, w) 

A(x, y, z) B(y, v) 

C(y, z, v) semi-join  A(x, y, z) 

=      

  all  triples (y, z, v) in C that 

“match” a triple (x, y, z) in A 
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The World inside P 
 

Suppose that  a decision problem is shown to be in P. 

 

• Is the problem P-complete (under logspace-reductions)?  

– Is the problem inherently sequential? 

– Note that Yannakakis’ algorithm is sequential. 

 

• Does the problem belong to some complexity class inside P? 

– There is a rich world of complexity classes inside P 

• L and NL Deterministic and non-deterministic logspace  

• Parallel complexity classes (fast parallel time) 

                        NC = [ i NCi, where  

 NCi =  The class of decision problems solvable in 

 O(logi(n))-time using polynomially-many processors 

       Fact:   NC1 µ  L  µ  NL  µ  NC2  µ  … µ  NC µ  P 

 

 

 

 



The Complexity of Acyclic CQE 

Question:  What is the exact complexity of Acyclic CQE? 

 

Theorem (Dalhaus – 1990) 

Acyclic CQE is in NC2  (hence, Acyclic CQE is parallelizable). 

 

Theorem (Gottlob, Leone, Scarcello – 1998) 

 Acyclic CQE is LOGCFL-complete, where 

– LOGCFL is the class of all decision problems having a  

          logspace-reduction to some context-free language. 

 

Fact:  NC1 µ  L  µ  NL  µ  LOGCFL µ  NC2  µ  … µ  NC µ  P 
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LOGCFL 

Definition: LOGCFL is the class of all decision problems having a 

logspace-reduction to some context-free language. 

 

Fact: LOGCFL was known to have complete problems: 

– Greibach’s hardest context-free language L0  (1973): 

(every context-free lang. is an inverse homomorphic image of L0) 

 

Fact: No problem from databases was known to be  

LOGCFL-complete, prior to the Gottlob-Leone-Scarcello paper. 
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The Complexity of Acyclic CQE: Definitive Result 

Theorem (Gottlob, Leone, Scarcello – 1998) 

 Acyclic CQE is LOGCFL-complete. 

  -- Upper Bound: Acyclic CQE is solvable via a non-deterministic  

    auxiliary push-down automaton in logspace and PTIME. 

    Join tree is processed top-down (unlike Yannakakis’ algorithm) 

  -- Lower Bound:  Reduction from SAC1 circuits:          

     logspace-uniform semi-unbounded circuits of O(log(n))-depth. 

 

Theorem (Gottlob, Leone, Scarcello – 1998) 

The following problems are LOGCFL-complete: 

• Acyclic Boolean Conjunctive Query Containment. 

• Acyclic Constraint Satisfaction. 
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Schema Mappings & Data Exchange 

Source  S    Target  T 

   

 

 Schema Mapping M = (S, T, Σ) 

 Source schema  S, Target schema T 

 Set  Σ  of declarative assertions about S and T.  

 

 Data Exchange via the schema mapping M = (S, T, Σ) 

    Transform a given source instance I to a target instance J 

so that <I, J> satisfy the specifications Σ of M. 

 Such a J is called a solution for I w.r.t. M. 

 

I J 

Σ 
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Formalization of Data Exchange 

Fagin, K …, Miller, Popa (2003)     

 

Schema Mapping M = (S, T, Σst , Σt ), where 

 Σst is a set of source-to-target tgds 

 Σt  is a set of target tgds and target egds 

 

 

Source Schema  
S  

Target Schema  
T 

  Σst 

I J 

  Σt 



Schema-Mapping Language 

• Source-to-Target Tuple Generating Dependencies  (s-t tgds)  

                          8 x  ((x)  y (x, y)), where 

 (x)     is a conjunction of atoms over the source;  

 (x, y) is a conjunction of atoms over the target.     

Example: 

(Student(s)  Enrolls(s,c))  t g (Teaches(t,c)   Grade(s,c,g)) 

                                                

• Target Tgds :     8 x (T(x)    y T(x, y))          

• Target Equality Generating Dependencies     (target egds) 

                         8 x  (T(x)    (x1=x2))  

  

8 e 8 d1 8 d2  (Mgr (e, d1)  Mgr (e, d2))   (d1 = d2) 
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Universal Solutions in Data Exchange 

• FKMP introduced the notion of universal solutions as the 

“best” solutions in data exchange. 

 

• By definition,  a solution is universal if it has  homomorphisms 

to all other solutions (thus, it is a “most general” solution). 

– Constants: entries in source instances 

– Variables (labeled nulls): other entries in target instances 

– Homomorphism h: J1 → J2 between target instances: 

• h(c) = c, for constant c 

• If P(a1,…,am) is in J1,, then P(h(a1),…,h(am)) is in J2 
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Universal Solutions in Data Exchange 

Schema  S  Schema  T 

I J 

Σ 

J1 

J2 
J3 

   Universal Solution 

    Solutions 

h1 h2 h3 
Homomorphisms 
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Algorithmic Properties of Universal Solutions 

Theorem (FKMP): Schema mapping M= (S, T, st, t) such that: 

– st is a set of source-to-target tgds;  

– t   is the union of a weakly acyclic set of  target tgds with a 

set of  target egds.  

    Then: 

• Universal solutions exist if and only if solutions exist. 

 

• PTIME algorithm for the existence-of-solutions problem for M: 

given I, is there J such that J is a solution for I? 

 

• A canonical universal solution (if solutions exist) can be 

produced in polynomial time using the chase procedure. 
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The Smallest Universal Solution 

Fact: Universal solutions are unique up to homomorphic equivalence,  

but need not be unique up to isomorphism. 

 

Question: Is there a “best” universal solution? 

Answer:  Fagin, K …, Popa (PODS 2003):  “small is beautiful” approach 

 

Definition: The core of an instance J is the smallest subinstance  J’  

that is homomorphically equivalent to J. 

 

Proposition:  Let M = (S, T, Σst , Σt ) be schema mapping. 

• All universal solutions have the same core. 

• The core of the universal solutions is the smallest universal 
solution (hence, the most compact to materialize). 
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The Core of a Structure 

   

J’= core(J) 

     J Definition: J’ is the core of J if 
 J’ µ J 

 
  there is a hom. h: J → J’ 

 
  there is no hom. g: J → J’’,  

    where J’’ ½ J’. 

h 

 

Example: If a graph G contains a                , then 

  

G is 3-colorable   if and only if   core(G)  =                  . 

 

Fact: Computing cores of graphs is an NP-hard problem. 



23 

Computing the Core - Early Result  

Theorem (FKP):   M = (S, T, Σst , Σt )  a schema mapping such that 

• Σst  is a set of s-t tgds  

• Σt is a set of target egds. 

Then the core of universal solutions is polynomial-time computable, 
i.e., 

there is a polynomial-time algorithm that, given a source instance I, 
the algorithm computes the core of the universal solutions for I. 

 

Algorithm: 

• Step 1: Obtain a target instance J by chasing I with Σst  

• Step 2: Use a greedy algorithm on J and Σt  to compute the core 
of the universal solutions for I w.r.t. M. 

 

Question: For what schema mappings is the core of the universal 
solutions polynomial-time computable? 

 

  

 



Computing the Core – Definitive Result 

Theorem (Gottlob – PODS 2005):   

M = (S, T, Σst , Σt ) a schema mapping such that 

• Σst  is a set of s-t tgds; 

• Σt is a set of full target tgds and target egds. 

Then the core of universal solutions is polynomial-time computable. 

 

Theorem (Gottlob  and Nash 2006):   

M = (S, T, Σst , Σt ) a schema mapping such that 

• st is a set of source-to-target tgds;  

• t   is the union of a weakly acyclic set of  target tgds with a set of  

target egds.  

Then the core of universal solutions is polynomial-time computable. 

 

 

 

  

 

24 



Computing the Core – Definitive Result  

Theorem (Gottlob  and Nash 2005):  M = (S, T, Σst , Σt )  such that 

• st is a set of source-to-target tgds;  

• t   is the union of a weakly acyclic set of  target tgds with a set of  

target egds.  

Then the core of universal solutions is polynomial-time computable. 

 

Algorithm:  Sophisticated algorithm with several new ideas:  

• Systematic use of retractions, instead of endomorphisms. 

• Keep track of ancestors and siblings of nulls in chase steps. 

• Obtain polynomial-time algorithm for t  with no target egds. 

• Simulate target egds using target full tgds. 

• Avoid cycles using a particular chase order. 
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Concluding Remarks 

Back to “Reflections on Georg Gottlob” in Gottlobiana 

 

“Brilliant scientist, successful entrepreneur, polyglot, erudite, art 

lover, wine connoisseur, gracious host, caring husband, proud 

father. Which of these qualities does Georg Gottlob possess?  

 

To those who have the pleasure to know Georg and the privilege 

to call him a friend, the answer is simple: all of the above!” 
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