1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 October 31, 2023

Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)

1.) Recall from the lecture the NP-complete problem SAT and its specialization 3-SAT, that is also NP-complete:

SAT

INSTANCE: A propositional formula φ.
QUESTION: Is φ satisfiable?

3-SAT

INSTANCE: A propositional formula φ in 3-CNF, i.e., of the form $\bigwedge_{i=1}^{n}\left(l_{i 1} \vee l_{i 2} \vee l_{i 3}\right)$. QUESTION: Is φ satisfiable?

For this exercise, assume that instances of 3-SAT are restricted to those in which no variable occurs twice in the same clause (the problem remains NP-complete under this restriction).
Consider now the following variant of SAT.

($\leq 3,3$)-SAT

INSTANCE: A propositional formula φ in CNF, where each clause consists of at most 3 literals over pairwise distinct variables and each variable has at most 3 occurrences.

QUESTION: Is φ satisfiable?
(This page contains no exercise, answer problems (a) and (b) on the following pages.)
(a) The following describes a polynomial-time many-one reduction from $\mathbf{3}$-SAT to $(\leq \mathbf{3}, \mathbf{3})$ SAT: Consider $\varphi=\bigwedge_{i=1}^{n}\left(l_{i 1} \vee l_{i 2} \vee l_{i 3}\right)$ over variables V. Let $V^{\prime} \subseteq V$ be the set of all variables that occur more than 3 times in φ. For each $x \in V^{\prime}$, we do the following. Let k be the number of occurrences of x in φ :

Step 1: Introduce k new variables x_{1}, \ldots, x_{k}, and replace the i th occurrence of x in φ with x_{i}, for all $i=1, \ldots, k$.

Step 2: Append clauses $\left(x_{i} \vee \neg x_{i+1}\right), i=1, \ldots, k-1$, as well as $\left(x_{k} \vee \neg x_{1}\right)$ to the resulting formula of Step 2.

Let φ^{\prime} be the formula obtained from φ by applying the two steps listed above, for each $x \in V^{\prime}$.

It holds that φ is a positive instance of $\mathbf{3}$-SAT $\Longleftrightarrow \varphi^{\prime}$ is a positive instance of $(\leq \mathbf{3}, \mathbf{3})$ SAT. Show the \Longrightarrow direction of the claim.
(b) Check which statements are true/false. 1 point for each correct answer, -1 for each incorrect answer, 0 for no answer. Negative points do not carry over to other exercises

You may use the fact that both 3-SAT and SAT are NP-complete problems.
true false
$\circ \quad \circ \quad$ The correctness of the reduction in (a) proves that ($\leq \mathbf{3}, \mathbf{3}$)-SAT is NP-hard.
$\circ \quad \circ \quad$ The correctness of the reduction in (a) proves that $(\leq \mathbf{3}, \mathbf{3})$-SAT is in NP.
$\circ \quad \circ \quad$ Every instance of $(\leq \mathbf{3}, \mathbf{3})$-SAT is an instance of $\mathbf{3}$-SAT.
$\circ \quad \circ \quad$ Every instance of $(\leq \mathbf{3}, \mathbf{3})$-SAT is an instance of $\mathbf{S A T}$.

- $\quad \circ \quad$ If we can show $(\leq \mathbf{3}, \mathbf{3})$-SAT to be in P , we would also show $\mathrm{P}=\mathrm{NP}$.
$\circ \quad \circ \quad$ Any problem that can be reduced to $(\leq \mathbf{3}, \mathbf{3})$-SAT in polynomial time is in NP.
2.) (a) Consider the function M, defined as follows.

```
Input: \(x, y\), two positive integers
Output: The computed positive integer value for \(x, y\)
if \(x==1\) then
    return \(2 y\);
end
else if \(y==1\) then
    return \(x\);
end
else return \(\mathrm{M}(x-1, \mathrm{M}(x, y-1))\);
Algorithm 1: The function M
```

Let \mathbb{N} denote the natural numbers without 0 . Use well-founded induction to show

$$
\forall x \forall y((x \in \mathbb{N} \wedge y \in \mathbb{N}) \rightarrow \mathrm{M}(x, y) \geq 2 y)
$$

(b) Consider the clauses C_{0}, \ldots, C_{6} in dimacs format (in this order from top to bottom, shown in the box) which are given as input to a SAT solver.

- Apply CDCL using the convention that if a variable is assigned as a decision, then it is assigned 'true'. Select variables as decisions in increasing order of their respective integer IDs in the dimacs format, starting with variable 1. Recall that unit clauses require a special treatment.
- When the first conflict occurs, draw the complete implication graph, mark the first UIP, give the resolution derivation of the learned asserting clause that corresponds to

| 1 | 0 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -1 | -2 | 4 | 0 | | |
| -4 | 5 | 0 | | | |
| -2 | -4 | 6 | 0 | | |
| -3 | -6 | 7 | 0 | | |
| -7 | 9 | 0 | | | |
| -5 | -6 | -7 | -9 | 0 | | the first UIP, and stop CDCL. You do not have to solve the formula!

3.) (a) Let p be the following IMP program loop, containing the integer-valued program variables x, y :

$$
\begin{aligned}
& \text { while } x \neq x+1 \text { do } \\
& \quad x:=x+1 ; \\
& y \\
& \text { od }
\end{aligned}
$$

Which of the following program assertions are inductive loop invariants of p ?

- $I_{1}: y>x$
- $I_{2}: y=3 * x^{2}$
- $I_{3}: y<x$

Give formal details justifying your answer. That is, if an assertion is an inductive loop invariant, provide a formal proof of it based on Hoare logic or using weakest liberal preconditions. If an assertion is not an inductive loop invariant, give a counterexample and justify your answer.
(b) Consider the following rule in Hoare logic:

$$
\{A\} x:=x+1\{B\}
$$

$$
\overline{\{A\}} \text { skip; if true then } x:=x+1 \text { else skip }\{B\}
$$

where A, B are assertions and x is an integer-valued IMP program variable. Is this rule sound? If yes, give a formal proof. Otherwise, give a counterexample and justify your answer.
4.) (a) Consider the following Kripke structure M with initial state s_{0} :

Give the smallest (i.e. having the minimal number of states) Kripke structure K such that $M \equiv K$, i.e. there is a bisimulation between M and K. Provide a bisimulation relation that witnesses $M \equiv K$.
(b) Consider the following Kripke structure M :

For each of the following formulae φ,
i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
ii. list the states s_{i} on which the formula φ holds; i.e. for which states s_{i} do we have $M, s_{i} \models \varphi$?
(If φ is a path formula, list the states s_{i} such that $M, s_{i} \models \mathbf{A} \varphi$.)

(c) CTL* tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and initial state s, or find a Kripke structure M with an initial state s, for which the formula does not hold and justify your answer.
i. AFG $a \Rightarrow$ AFAG a
ii. AFAG $a \Rightarrow$ AFG a

