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1.) Recall from the lecture the NP-complete problem SAT and its specialization 3-SAT, that
is also NP-complete:

SAT

INSTANCE: A propositional formula φ.

QUESTION: Is φ satisfiable?

3-SAT

INSTANCE: A propositional formula φ in 3-CNF, i.e., of the form
∧n

i=1(li1 ∨ li2 ∨ li3).

QUESTION: Is φ satisfiable?

For this exercise, assume that instances of 3-SAT are restricted to those in which no variable
occurs twice in the same clause (the problem remains NP-complete under this restriction).

Consider now the following variant of SAT.

(≤3,3)-SAT

INSTANCE: A propositional formula φ in CNF, where each clause consists of at most
3 literals over pairwise distinct variables and each variable has at most 3 occurrences.

QUESTION: Is φ satisfiable?

(This page contains no exercise, answer problems (a) and (b) on the following pages.)



(a) The following describes a polynomial-time many-one reduction from 3-SAT to (≤3,3)-
SAT: Consider φ =

∧n
i=1(li1 ∨ li2 ∨ li3) over variables V . Let V ′ ⊆ V be the set of all

variables that occur more than 3 times in φ. For each x ∈ V ′, we do the following. Let
k be the number of occurrences of x in φ:

Step 1: Introduce k new variables x1, . . . , xk, and replace the ith occurrence of x
in φ with xi, for all i = 1, . . . , k.

Step 2: Append clauses (xi ∨ ¬xi+1), i = 1, . . . , k − 1, as well as (xk ∨ ¬x1) to the
resulting formula of Step 2.

Let φ′ be the formula obtained from φ by applying the two steps listed above, for each
x ∈ V ′.

It holds that φ is a positive instance of 3-SAT ⇐⇒ φ′ is a positive instance of (≤3,3)-
SAT. Show the =⇒ direction of the claim.

(9 points)



(b) Check which statements are true/false. 1 point for each correct answer, -1 for each
incorrect answer, 0 for no answer. Negative points do not carry over to other exercises.

You may use the fact that both 3-SAT and SAT are NP-complete problems.

true false
◦ ◦ The correctness of the reduction in (a) proves that (≤3,3)-SAT is NP-hard.

◦ ◦ The correctness of the reduction in (a) proves that (≤3,3)-SAT is in NP.

◦ ◦ Every instance of (≤3,3)-SAT is an instance of 3-SAT.

◦ ◦ Every instance of (≤3,3)-SAT is an instance of SAT.

◦ ◦ If we can show (≤3,3)-SAT to be in P, we would also show P=NP.

◦ ◦ Any problem that can be reduced to (≤3,3)-SAT in polynomial time is in NP.

(6 points)



2.) (a) Consider the function M, defined as follows.

Input: x, y, two positive integers
Output: The computed positive integer value for x, y
if x == 1 then

return 2y;
end
else if y == 1 then

return x;
end
else return M(x− 1,M(x, y − 1));

Algorithm 1: The function M

Let N denote the natural numbers without 0. Use well-founded induction to show

∀x ∀y
(
(x ∈ N ∧ y ∈ N) → M(x, y) ≥ 2y

)
.

(11 points)



(b) Consider the clauses C0, . . . , C6 in dimacs format (in this order from top to bottom,
shown in the box) which are given as input to a SAT solver.

• Apply CDCL using the convention that if a variable is as-
signed as a decision, then it is assigned ’true’. Select vari-
ables as decisions in increasing order of their respective
integer IDs in the dimacs format, starting with variable
1. Recall that unit clauses require a special treatment.

• When the first conflict occurs, draw the complete implica-
tion graph, mark the first UIP, give the resolution deriva-
tion of the learned asserting clause that corresponds to
the first UIP, and stop CDCL. You do not have to solve
the formula!

1 0

-1 -2 4 0

-4 5 0

-2 -4 6 0

-3 -6 7 0

-7 9 0

-5 -6 -7 -9 0

(4 points)



3.) (a) Let p be the following IMP program loop, containing the integer-valued program vari-
ables x, y:

while x ̸= x+ 1 do
x := x+ 1;
y := y + 6 ∗ x− 3;

od

Which of the following program assertions are inductive loop invariants of p?

• I1 : y > x

• I2 : y = 3 ∗ x2

• I3 : y < x

Give formal details justifying your answer. That is, if an assertion is an inductive loop
invariant, provide a formal proof of it based on Hoare logic or using weakest liberal
preconditions. If an assertion is not an inductive loop invariant, give a counterexample
and justify your answer.

(9 points)



(b) Consider the following rule in Hoare logic:

{A} x := x+ 1 {B}
{A} skip; if true then x := x+ 1 else skip {B}

where A,B are assertions and x is an integer-valued IMP program variable. Is this rule
sound? If yes, give a formal proof. Otherwise, give a counterexample and justify your
answer.

(6 points)



4.) (a) Consider the following Kripke structure M with initial state s0:

s0: {a}

s1: {b}

s4: {b}

s2: {b}

s5: {a}

s3: {a}

s6: {b}

Give the smallest (i.e. having the minimal number of states) Kripke structure K such
that M ≡ K, i.e. there is a bisimulation between M and K. Provide a bisimulation
relation that witnesses M ≡ K.

(4 points)



(b) Consider the following Kripke structure M :

s0: {}

s2: {b}s1: {a}

s3: {a}

For each of the following formulae φ,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and

ii. list the states si on which the formula φ holds; i.e. for which states si do we
have M, si |= φ?
(If φ is a path formula, list the states si such that M, si |= Aφ.)

φ CTL LTL CTL* States si

a ∨ b □ □ □

FG(a ∨ b) □ □ □

EFGa □ □ □

EFAGa □ □ □

a U b □ □ □

(5 points)



(c) CTL* tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke struc-
ture M and initial state s, or find a Kripke structure M with an initial state s, for which
the formula does not hold and justify your answer.

i. AFGa ⇒ AFAGa

ii. AFAGa ⇒ AFGa

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut


