1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 May 19, 2023							
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)			

1.) A triangle-graph is any undirected graph (V, E) that contains edges (a, b), (b, c), (c, a) for some $\{a, b, c\} \subseteq V$. Recall the **DOMINATING SET** problem. Consider the following variant thereof.

DS-TRIANGLE

INSTANCE: A triangle-graph G = (V, E), and an integer k.

QUESTION: Does there exist a dominating set of vertices of size at most k, i.e., is there a set $S \subseteq V$ with $|S| \leq k$ such that for every vertex $v \in V$ it either holds $v \in S$ or there is some $w \in S$ such that $(v, w) \in E$.

Recall that the (standard) **DOMINATING SET** problem is defined over *arbitrary* undirected graphs (together with an integer k) and has the same question.

(a) The following function g provides a polynomial-time many-one reduction from the problem **DOMINATING SET** to **DS-TRIANGLE**:

$$g((G, k)) = (f(G), k+1).$$

We define f(G) = (V', E') as follows. For a graph G = (V, E), let $\{a, b, c\}$ be a set of fresh vertices. Moreover we define:

$$V' = V \cup \{a, b, c\},$$

$$E' = E \cup \{(a, b), (b, c), (c, a)\}.$$

Show the correctness of the reduction, i.e., show that (G, k) is a positive instance of **DOMINATING SET** if and only if g((G, k)) is a positive instance of **DS-TRIANGLE**.

(9 points)

(b) Check which statements are true/false. 1 point for each correct answer, -1 for each incorrect answer, 0 for no answer. Negative points do not carry over to other exercises.

You may use the fact that **DOMINATING SET** is NP-complete. Recall also that **SATISFIABILITY** is NP-complete.

true false

0	0	The correctness of the reduction in (a) proves NP-hardness of DS-TRIANGLE .
0	0	The correctness of the reduction in (a) proves NP-hardness of the complement of DS-TRIANGLE .
0	0	The correctness of the reduction in (a) proves that DS-TRIANGLE is at least as hard as SATISFIABILITY .
0	0	If an exponential time algorithm for DS-TRIANGLE exists then this proves $P \neq NP$.
0	0	The fact that DS-TRIANGLE is a special case of DOMINATING SET proves NP-membership of DS-TRIANGLE .
0	0	The correctness of the reduction in (a) proves that there is a polynomial-time many-one reduction from SATISFIABILITY to DS-TRIANGLE .

(6 points)

2.) (a) Let φ^E be the following formula of *E*-logic:

$$(x_5 = x_6 \lor x_4 \neq x_5) \land x_4 \neq x_6 \land x_4 = x_2 \land x_2 = x_3 \land (x_3 \neq x_1 \lor x_4 = x_1)$$

Apply the Sparse Method and present an equisatisfiable propositional formula. (6 points)

(b) Let $\Sigma = (\{a/0, b/0, f/2\}, \{p/2, \approx/2\})$ and let \mathcal{T} be a first-order theory containing the following axioms:

$$\forall x \forall y \left(x \approx y \to y \approx x \right) \tag{sy}$$

$$\forall x \forall y \Big(p(x,y) \to \big(p(x,f(x,y)) \land p(f(x,y),y) \big) \Big)$$
 (pd)

$$\forall x \forall y \Big(p(x, y) \to x \not\approx y \Big) \tag{pi}$$

i. Use the semantic argument method to prove the following statement: Let \mathcal{I} be a \mathcal{T} -interpretation with $\mathcal{I} \models p(a, b)$, then it holds that

$$\mathcal{I} \models f(a,b) \not\approx a \wedge f(a,b) \not\approx b \wedge a \not\approx b.$$

ii. Is $\varphi: P(f(a, b), f(b, a)) \mathcal{T}$ -valid? If yes, then give a proof in the semantic argument method. If no, then present a counterexample and show that it falsifies φ .

(9 points)

(a) Let p be the following IMP program loop, containing the integer-valued program variables x, y, z:

$$\begin{array}{l} x := 0; y := 0; z := 5; \\ \textbf{while } y < n \ \textbf{do} \\ x := x - y; \\ y := y + 1; \\ z := z - 5; \\ \textbf{od} \end{array}$$

Give an inductive invariant for **while** loop in p and prove the validity of the partial correctness triple $\{n = 11\}p\{x + 55 = 0\}$.

(9 points)

3.)

(b) Let p be the following IMP program:

if $x \neq y$ then x := x * y; skip else y := y * x; abort

where x, y are integer-valued program variables.

Provide a non-trivial pre-condition A and a non-trivial post-condition B, such that: (a) $\{A\} \ p \ \{B\}$ is not valid;

- (b) $\{A\} p \{B\}$ is valid but [A] p [B] is not valid;
- (c) [A] p [B] is valid.

Trivial pre-condition/post-condition means equivalent to true or false, so your preconditions A and postconditions B should not be equivalent to true or false.

(6 points)

4.) (a) Consider the Kripke structures M_1 and M_2 . The initial state of M_1 is s_0 , the initial state of M_2 is t_0 .

Kripke structure M_1 :

Kripke structure M_2 :

- i. Check whether M_2 simulates M_1 , i.e., provide a simulation relation that witnesses $M_1 \preceq M_2$, or briefly explain why M_2 does not simulate M_1 .
- ii. Check whether M_1 simulates M_2 , i.e., provide a simulation relation that witnesses $M_2 \preceq M_1$, or briefly explain why M_1 does not simulate M_2 .

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?
 - (If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{AX}(b)$				
$((c) \ \mathbf{U} \ (b))$				
$\mathbf{F}(b \wedge c)$				
$\mathbf{E}[(b \wedge c) \ \mathbf{U} \ (a)]$				

(4 points)

- (c) Let $M = (S, S_0, R, AP, L)$ be a Kripke structure over a set of propositional symbols AP. We define $M' = (S', S'_0, R', AP', L')$ as follows:
 - $AP' \subseteq AP$,
 - $S' = S, S'_0 = S_0, R' = R$, and
 - $L'(s) = L(s) \cap AP'$, where $s \in S$.
 - i. Consider the concrete instance M over $AP = \{a, b, c\}$ below. Draw M' with $AP' = \{a, c\}$ according to the definition above.

ii. Given any M and M' according to the definitions above, prove that for any ACTL formula φ over propositions from AP' the following holds:

$$M \models \varphi$$
 if and only if $M' \models \varphi$

Hint: Use the semantics of ACTL and use induction on the structure of the formula (structural induction).

Hint: Recall the definition of ACTL formulae over AP:

- p and $\neg p$ are ACTL formulae for $p \in AP$,
- if φ is an ACTL formula, then **AX** φ , **AF** φ , and **AG** φ are ACTL formulae,
- if φ and ψ are ACTL formulae, then $\varphi \wedge \psi$, $\varphi \lor \psi$, and $\mathbf{A} [\varphi \mathbf{U} \psi]$ are ACTL formulae.

(7 points)