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1.) A triangle-graph is any undirected graph (V,E) that contains edges (a, b), (b, c), (c, a) for
some {a, b, c} ⊆ V . Recall the DOMINATING SET problem. Consider the following
variant thereof.

DS-TRIANGLE

INSTANCE: A triangle-graph G = (V,E), and an integer k.

QUESTION: Does there exist a dominating set of vertices of size at most k, i.e., is there
a set S ⊆ V with |S| ≤ k such that for every vertex v ∈ V it either holds v ∈ S or there
is some w ∈ S such that (v, w) ∈ E.

Recall that the (standard) DOMINATING SET problem is defined over arbitrary undi-
rected graphs (together with an integer k) and has the same question.

(a) The following function g provides a polynomial-time many-one reduction from the prob-
lem DOMINATING SET to DS-TRIANGLE:

g((G, k)) = (f(G), k + 1).

We define f(G) = (V ′, E′) as follows. For a graph G = (V,E), let {a, b, c} be a set of
fresh vertices. Moreover we define:

V ′ = V ∪ {a, b, c},
E′ = E ∪ {(a, b), (b, c), (c, a)}.

Show the correctness of the reduction, i.e., show that (G, k) is a positive instance of
DOMINATING SET if and only if g((G, k)) is a positive instance of DS-TRIANGLE.

(9 points)



(b) Check which statements are true/false. 1 point for each correct answer, -1 for each
incorrect answer, 0 for no answer. Negative points do not carry over to other exercises.

You may use the fact that DOMINATING SET is NP-complete. Recall also that
SATISFIABILITY is NP-complete.

true false
◦ ◦ The correctness of the reduction in (a) proves NP-hardness of DS-TRIANGLE.

◦ ◦ The correctness of the reduction in (a) proves NP-hardness of the complement
of DS-TRIANGLE.

◦ ◦ The correctness of the reduction in (a) proves that DS-TRIANGLE is at
least as hard as SATISFIABILITY.

◦ ◦ If an exponential time algorithm for DS-TRIANGLE exists then this
proves P ̸= NP.

◦ ◦ The fact that DS-TRIANGLE is a special case of DOMINATING SET
proves NP-membership of DS-TRIANGLE.

◦ ◦ The correctness of the reduction in (a) proves that there is a polynomial-time
many-one reduction from SATISFIABILITY to DS-TRIANGLE.

(6 points)



2.) (a) Let φE be the following formula of E-logic:

(x5 = x6 ∨ x4 ̸= x5) ∧ x4 ̸= x6 ∧ x4 = x2 ∧ x2 = x3 ∧ (x3 ̸= x1 ∨ x4 = x1)

Apply the Sparse Method and present an equisatisfiable propositional formula. (6 points)



(b) Let Σ = ({a/0, b/0, f/2}, {p/2, ≈/2}) and let T be a first-order theory containing the
following axioms:

∀x∀y
(
x ≈ y → y ≈ x

)
(sy)

∀x∀y
(
p(x, y) →

(
p(x, f(x, y)) ∧ p(f(x, y), y)

))
(pd)

∀x∀y
(
p(x, y) → x ̸≈ y

)
(pi)

i. Use the semantic argument method to prove the following statement:
Let I be a T -interpretation with I |= p(a, b), then it holds that

I |= f(a, b) ̸≈ a ∧ f(a, b) ̸≈ b ∧ a ̸≈ b.

ii. Is φ : P (f(a, b), f(b, a)) T -valid? If yes, then give a proof in the semantic argument
method. If no, then present a counterexample and show that it falsifies φ.

(9 points)



3.) AAA

(a) Let p be the following IMP program loop, containing the integer-valued program vari-
ables x, y, z:

x := 0; y := 0; z := 5;
while y < n do
x := x− y;
y := y + 1;
z := z − 5;

od

Give an inductive invariant for while loop in p and prove the validity of the partial
correctness triple {n = 11}p{x+ 55 = 0}.

(9 points)



(b) Let p be the following IMP program:

if x ̸= y then x := x ∗ y; skip else y := y ∗ x;abort

where x, y are integer-valued program variables.

Provide a non-trivial pre-condition A and a non-trivial post-condition B, such that:

(a) {A} p {B} is not valid;

(b) {A} p {B} is valid but [A] p [B] is not valid;

(c) [A] p [B] is valid.

Trivial pre-condition/post-condition means equivalent to true or false, so your pre-
conditions A and postconditions B should not be equivalent to true or false.

(6 points)



4.) (a) Consider the Kripke structures M1 and M2. The initial state of M1 is s0, the initial
state of M2 is t0.

Kripke structure M1: Kripke structure M2:

s0: {a}

s1: {b}

s2: {c}

t0: {a}

t4: {b}

t1: {a}

t2: {c}

t3: {c}

t5: {b}

i. Check whether M2 simulates M1, i.e., provide a simulation relation that witnesses
M1 ⪯M2, or briefly explain why M2 does not simulate M1.

ii. Check whether M1 simulates M2, i.e., provide a simulation relation that witnesses
M2 ⪯M1, or briefly explain why M1 does not simulate M2.

(4 points)



(b) Consider the following Kripke structure M :

s0: {a, b}

s2: {c} s1: {b, c}

s3: {a} s4: {b}

For each of the following formulae φ,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and

ii. list the states si on which the formula φ holds; i.e. for which states si do we
have M, si |= φ?
(If φ is a path formula, list the states si such that M, si |= Aφ.)

φ CTL LTL CTL* States si

AX(b) □ □ □

((c) U (b)) □ □ □

F(b ∧ c) □ □ □

E[(b ∧ c) U (a)] □ □ □

(4 points)



(c) LetM = (S, S0, R,AP,L) be a Kripke structure over a set of propositional symbols AP .
We define M ′ = (S′, S′

0, R
′, AP ′, L′) as follows:

• AP ′ ⊆ AP ,

• S′ = S, S′
0 = S0, R

′ = R, and

• L′(s) = L(s) ∩AP ′, where s ∈ S.

i. Consider the concrete instance M over AP = {a, b, c} below. Draw M ′ with AP ′ =
{a, c} according to the definition above.

a b b a, c

ii. Given any M and M ′ according to the definitions above, prove that for any ACTL
formula φ over propositions from AP ′ the following holds:

M |= φ if and only if M ′ |= φ

Hint: Use the semantics of ACTL and use induction on the structure of the formula
(structural induction).

Hint: Recall the definition of ACTL formulae over AP :

• p and ¬p are ACTL formulae for p ∈ AP ,

• if φ is an ACTL formula, then AXφ, AFφ, and AGφ are ACTL formulae,

• if φ and ψ are ACTL formulae, then φ ∧ ψ, φ ∨ ψ, and A [φUψ] are ACTL
formulae.

(7 points)


