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1.) A triangle-graph is any undirected graph (V,E) that contains edges (a,b), (b,c), (c,a) for
some {a,b,c} C V. Recall the DOMINATING SET problem. Consider the following
variant thereof.

DS-TRIANGLE
INSTANCE: A triangle-graph G = (V, E), and an integer k.

QUESTION: Does there exist a dominating set of vertices of size at most k, i.e., is there
a set S C V with |S| < k such that for every vertex v € V' it either holds v € S or there
is some w € S such that (v,w) € E.

Recall that the (standard) DOMINATING SET problem is defined over arbitrary undi-
rected graphs (together with an integer k) and has the same question.

(a) The following function g provides a polynomial-time many-one reduction from the prob-
lem DOMINATING SET to DS-TRIANGLE:

9((G, k) = (f(G),k +1).

We define f(G) = (V', E’) as follows. For a graph G = (V, E), let {a,b,c} be a set of
fresh vertices. Moreover we define:

V' =V u{a,b,c},
E' = FEU{(a,b),(b,c),(c,a)}.

Show the correctness of the reduction, i.e., show that (G, k) is a positive instance of
DOMINATING SET if and only if ¢((G, k)) is a positive instance of DS-TRIANGLE.

(9 points)



(b) Check which statements are true/false. 1 point for each correct answer, -1 for each
incorrect answer, 0 for no answer. Negative points do not carry over to other exercises.

You may use the fact that DOMINATING SET is NP-complete. Recall also that
SATISFIABILITY is NP-complete.

true false
o o The correctness of the reduction in (a) proves NP-hardness of DS-TRIANGLE.

The correctness of the reduction in (a) proves NP-hardness of the complement

° °  of DS-TRIANGLE.

o o The correctness of the reduction in (a) proves that DS-TRIANGLE is at
least as hard as SATISFIABILITY.
If an exponential time algorithm for DS-TRIANGLE exists then this

0] 0]
proves P = NP.

R R The fact that DS-TRIANGLE is a special case of DOMINATING SET
proves NP-membership of DS-TRIANGLE.

o o The correctness of the reduction in (a) proves that there is a polynomial-time

many-one reduction from SATISFIABILITY to DS-TRIANGLE.

(6 points)



2.) (a) Let ¢¥ be the following formula of E-logic:
(135 =xg V x4 75.1‘5)/\l‘47é$6/\.%‘4:I2/\$2 2373/\(31‘3 %+ T \/J)4=.’E1)

Apply the Sparse Method and present an equisatisfiable propositional formula. (6 points)



(b) Let X = ({a/0, b/0, f/2},{p/2, ~/2}) and let T be a first-order theory containing the
following axioms:

VzVy (x Y >y~ :U) (sy)
VaVy (p(x,y) — (p(x, flz,y) Ap(f(z, y)7y))> (pd)
VaVy (p(x, y) > xR y) (pi)

i. Use the semantic argument method to prove the following statement:
Let Z be a T-interpretation with Z = p(a, b), then it holds that

TE fla,b)%an f(a,b) ZbNawhb.

ii. Is ¢: P(f(a,b), f(b,a)) T-valid? If yes, then give a proof in the semantic argument
method. If no, then present a counterexample and show that it falsifies ¢.

(9 points)



3.)

(a) Let p be the following IMP program loop, containing the integer-valued program vari-
ables x,y, z:
z:=0;y:=0;2:=05;
while y < n do

Ti=x —;
y=y+1
z:=2z—09;

od

Give an inductive invariant for while loop in p and prove the validity of the partial
correctness triple {n = 11}p{z + 55 = 0}.

(9 points)



(b) Let p be the following IMP program:
if x#y then z:=axxy;skip else y:=yx*uz;abort
where z,y are integer-valued program variables.

Provide a non-trivial pre-condition A and a non-trivial post-condition B, such that:

(a) {A} p {B} is not valid;
(b) {4} p {B} is valid but [A] p [B] is not valid;
(c) [A] p [B] is valid.

Trivial pre-condition/post-condition means equivalent to true or false, so your pre-
conditions A and postconditions B should not be equivalent to true or false.

(6 points)



4.) (a) Consider the Kripke structures M; and Ms. The initial state of M; is s, the initial
state of My is tg.

Kripke structure Mj: Kripke structure Ms:
s0: {a} ®
A
! G
s1: {b} l
s2: {c}

i. Check whether M, simulates My, i.e., provide a simulation relation that witnesses
My =< Mo, or briefly explain why Ms does not simulate Mj.

ii. Check whether M; simulates Ms, i.e., provide a simulation relation that witnesses
My < My, or briefly explain why M; does not simulate M.

(4 points)



(b) Consider the following Kripke structure M:

For each of the following formulae ¢,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and

ii. list the states s; on which the formula ¢ holds; i.e. for which states s; do we
have M, s; = ¢?
(If ¢ is a path formula, list the states s; such that M,s; = Ay.)

® CTL LTL CTL* States s;
AX(b) O O O
((¢) U () o o O
F(bAc) o 0O O
E[(bAc) U (a)] | O O 0

(4 points)



(c) Let M = (S, Sy, R, AP, L) be a Kripke structure over a set of propositional symbols AP.
We define M’ = (5', S}, R', AP', L") as follows:
o AP C AP,
e =8, 5,=>5p, R =R, and
o L'(s)=L(s)NAP’, where s € S.
i. Consider the concrete instance M over AP = {a,b,c} below. Draw M’ with AP’ =
{a, ¢} according to the definition above.

QOO

ii. Given any M and M’ according to the definitions above, prove that for any ACTL
formula ¢ over propositions from AP’ the following holds:

M = ¢ if and only if M’ = ¢

Hint: Use the semantics of ACTL and use induction on the structure of the formula
(structural induction).

Hint: Recall the definition of ACTL formulae over AP:
e p and —p are ACTL formulae for p € AP,
o if v is an ACTL formula, then AX ¢, AF ¢, and AG ¢ are ACTL formulae,
o if o and ¢ are ACTL formulae, then ¢ A, ¢ V¢, and A[p U] are ACTL
formulae.

(7 points)



