1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 May 19, 2023

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) A triangle-graph is any undirected graph (V, E) that contains edges $(a, b),(b, c),(c, a)$ for some $\{a, b, c\} \subseteq V$. Recall the DOMINATING SET problem. Consider the following variant thereof.

DS-TRIANGLE

INSTANCE: A triangle-graph $G=(V, E)$, and an integer k.
QUESTION: Does there exist a dominating set of vertices of size at most k, i.e., is there a set $S \subseteq V$ with $|S| \leq k$ such that for every vertex $v \in V$ it either holds $v \in S$ or there is some $w \in S$ such that $(v, w) \in E$.

Recall that the (standard) DOMINATING SET problem is defined over arbitrary undirected graphs (together with an integer k) and has the same question.
(a) The following function g provides a polynomial-time many-one reduction from the problem DOMINATING SET to DS-TRIANGLE:

$$
g((G, k))=(f(G), k+1) .
$$

We define $f(G)=\left(V^{\prime}, E^{\prime}\right)$ as follows. For a graph $G=(V, E)$, let $\{a, b, c\}$ be a set of fresh vertices. Moreover we define:

$$
\begin{aligned}
V^{\prime} & =V \cup\{a, b, c\} \\
E^{\prime} & =E \cup\{(a, b),(b, c),(c, a)\}
\end{aligned}
$$

Show the correctness of the reduction, i.e., show that (G, k) is a positive instance of DOMINATING SET if and only if $g((G, k))$ is a positive instance of DS-TRIANGLE.
(b) Check which statements are true/false. 1 point for each correct answer, -1 for each incorrect answer, 0 for no answer. Negative points do not carry over to other exercises.

You may use the fact that DOMINATING SET is NP-complete. Recall also that SATISFIABILITY is NP-complete.
true false
$\circ \quad \circ \quad$ The correctness of the reduction in (a) proves NP-hardness of DS-TRIANGLE The correctness of the reduction in (a) proves NP-hardness of the complement of DS-TRIANGLE.

The correctness of the reduction in (a) proves that DS-TRIANGLE is at least as hard as SATISFIABILITY.

If an exponential time algorithm for DS-TRIANGLE exists then this proves $\mathrm{P} \neq \mathrm{NP}$. proves NP-membership of DS-TRIANGLE.
2.) (a) Let φ^{E} be the following formula of E-logic:

$$
\left(x_{5}=x_{6} \vee x_{4} \neq x_{5}\right) \wedge x_{4} \neq x_{6} \wedge x_{4}=x_{2} \wedge x_{2}=x_{3} \wedge\left(x_{3} \neq x_{1} \vee x_{4}=x_{1}\right)
$$

Apply the Sparse Method and present an equisatisfiable propositional formula. (6 points)
(b) Let $\Sigma=(\{a / 0, b / 0, f / 2\},\{p / 2, \approx / 2\})$ and let \mathcal{T} be a first-order theory containing the following axioms:

$$
\begin{align*}
& \forall x \forall y(x \approx y \rightarrow y \approx x) \tag{sy}\\
& \forall x \forall y(p(x, y) \rightarrow(p(x, f(x, y)) \wedge p(f(x, y), y))) \tag{pd}\\
& \forall x \forall y(p(x, y) \rightarrow x \not \approx y) \tag{pi}
\end{align*}
$$

i. Use the semantic argument method to prove the following statement: Let \mathcal{I} be a \mathcal{T}-interpretation with $\mathcal{I} \models p(a, b)$, then it holds that

$$
\mathcal{I} \models f(a, b) \not \approx a \wedge f(a, b) \not \approx b \wedge a \not \approx b .
$$

ii. Is $\varphi: P(f(a, b), f(b, a)) \mathcal{T}$-valid? If yes, then give a proof in the semantic argument method. If no, then present a counterexample and show that it falsifies φ.
3.)
(a) Let p be the following IMP program loop, containing the integer-valued program variables x, y, z :

$$
\begin{aligned}
& x:=0 ; y:=0 ; z:=5 ; \\
& \text { while } y<n \text { do } \\
& \quad x:=x-y ; \\
& y:=y+1 ; \\
& z:=z-5 ; \\
& \text { od }
\end{aligned}
$$

Give an inductive invariant for while loop in p and prove the validity of the partial correctness triple $\{n=11\} p\{x+55=0\}$.
(b) Let p be the following IMP program:

$$
\text { if } x \neq y \quad \text { then } \quad x:=x * y \text {; skip else } y:=y * x \text {; abort }
$$

where x, y are integer-valued program variables.
Provide a non-trivial pre-condition A and a non-trivial post-condition B, such that:
(a) $\{A\} p\{B\}$ is not valid;
(b) $\{A\} p\{B\}$ is valid but $[A] p[B]$ is not valid;
(c) $[A] p[B]$ is valid.

Trivial pre-condition/post-condition means equivalent to true or false, so your preconditions A and postconditions B should not be equivalent to true or false.
(6 points)
4.) (a) Consider the Kripke structures M_{1} and M_{2}. The initial state of M_{1} is s_{0}, the initial state of M_{2} is t_{0}.

Kripke structure M_{1} :

Kripke structure M_{2} :

i. Check whether M_{2} simulates M_{1}, i.e., provide a simulation relation that witnesses $M_{1} \preceq M_{2}$, or briefly explain why M_{2} does not simulate M_{1}.
ii. Check whether M_{1} simulates M_{2}, i.e., provide a simulation relation that witnesses $M_{2} \preceq M_{1}$, or briefly explain why M_{1} does not simulate M_{2}.
(b) Consider the following Kripke structure M :

For each of the following formulae φ,
i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
ii. list the states s_{i} on which the formula φ holds; i.e. for which states s_{i} do we have $M, s_{i} \models \varphi$?
(If φ is a path formula, list the states s_{i} such that $M, s_{i} \models \mathbf{A} \varphi$.)

(c) Let $M=\left(S, S_{0}, R, A P, L\right)$ be a Kripke structure over a set of propositional symbols $A P$. We define $M^{\prime}=\left(S^{\prime}, S_{0}^{\prime}, R^{\prime}, A P^{\prime}, L^{\prime}\right)$ as follows:

- $A P^{\prime} \subseteq A P$,
- $S^{\prime}=S, S_{0}^{\prime}=S_{0}, R^{\prime}=R$, and
- $L^{\prime}(s)=L(s) \cap A P^{\prime}$, where $s \in S$.
i. Consider the concrete instance M over $A P=\{a, b, c\}$ below. Draw M^{\prime} with $A P^{\prime}=$ $\{a, c\}$ according to the definition above.

ii. Given any M and M^{\prime} according to the definitions above, prove that for any ACTL formula φ over propositions from $A P^{\prime}$ the following holds:

$$
M \models \varphi \text { if and only if } M^{\prime} \models \varphi
$$

Hint: Use the semantics of ACTL and use induction on the structure of the formula (structural induction).

Hint: Recall the definition of ACTL formulae over $A P$:

- p and $\neg p$ are ACTL formulae for $p \in A P$,
- if φ is an ACTL formula, then $\mathbf{A X} \varphi, \mathbf{A F} \varphi$, and $\mathbf{A G} \varphi$ are ACTL formulae,
- if φ and ψ are ACTL formulae, then $\varphi \wedge \psi, \varphi \vee \psi$, and $\mathbf{A}[\varphi \mathbf{U} \psi]$ are ACTL formulae.

