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1.) Recall the 3-COLORABILITY problem from the lecture. Consider the following variant
thereof. A graph G = (V,E) is connected iff for each pair s, t ∈ V there is a path from s to
t in G, i.e., edges (s, v1), (v1, v2), . . . , (vn−1, vn), (vn, t).

CON-3-COL

INSTANCE: A connected graph G = (V,E).

QUESTION: Does there exist a valid 3-coloring for G, i.e., a function µ from vertices in
V to values in {0, 1, 2} such that µ(x) ̸= µ(y) for any edge (x, y) ∈ E.

(a) The following function f provides a polynomial-time many-one reduction from the prob-
lem 3-COLORABILITY to CON-3-COL: for a graph G = (V,E), let Vuncon be a
set of fresh vertices, such that:

Vuncon = {vx,y | x, y ∈ V, there is no path in G from x to y}.

We define f(G) = G′ with G′ = (V ′, E′), where

V ′ = V ∪ Vuncon,

E′ = E ∪ {(x, vx,y), (y, vx,y) | vx,y ∈ Vuncon}.

Show the correctness of the reduction in (a), i.e., show that G is a positive instance of
3-COLORABILITY if and only if f(G) is a positive instance of CON-3-COL.

(9 points)



(b) Check which statements are true/false. 1 point for each correct answer, -1 for each
incorrect answer, 0 for no answer. Negative points do not carry over to other exercises.

You may use the fact that 3-COLORABILITY is NP-complete. Recall also that
SATISFIABILITY is NP-complete.

true false
◦ ◦ The correctness of the reduction in (a) proves NP-hardness of CON-3-COL.

◦ ◦ The correctness of the reduction in (a) proves NP-membership of the
complement of CON-3-COL.

◦ ◦ The correctness of the reduction in (a) proves undecidability of
CON-3-COL.

◦ ◦ If we can show CON-3-COL to be in P, we also would have shown P = NP.

◦ ◦ The fact that CON-3-COL is a special case of 3-COLORABILITY
proves NP-membership of CON-3-COL.

◦ ◦ The correctness of the reduction in (a) proves that there is a polynomial-time
many-one reduction from SATISFIABILITY to CON-3-COL.

(6 points)



2.) (a) Translate the following formula φE :

¬
(
a

.
= b ∧ a ̸ .= c →

(
(a

.
= d ∧ e ̸ .= f) ∨ e ̸ .= h ∨ f ̸ .= g ∨ (b ̸ .= c ∧ e

.
= h ∧ h ̸= g)

))
into a propositional formula φp such that φE is E-satisfiable if and only if φp is satisfi-
able.

Recall that a formula is simplified before the propositional skeleton and the transitivity
constraints are constructed. In the simplification steps, indicate the simple contradictory
cycles and the pure literals. (12 points)



(b) Consider the clauses C0, . . . , C6 in dimacs format (in this order from top to bottom,
shown in the box) which are given as input to a SAT solver.

� Apply CDCL using the convention that if a variable is as-
signed as a decision, then it is assigned ’true’. Select vari-
ables as decisions in increasing order of their respective
integer IDs in the dimacs format, starting with variable
1. Recall that unit clauses require a special treatment.

� When the first conflict occurs, draw the complete implica-
tion graph, mark the first UIP, give the resolution deriva-
tion of the learned asserting clause that corresponds to
the first UIP, and stop CDCL. You do not have to solve
the formula!

2 0

-1 4 0

-4 5 0

-2 -4 6 0

-3 -6 7 0

-7 9 0

-5 -6 -7 -9 0

(3 points)



3.) AAA

(a) Let p be the following IMP program loop, containing the integer-valued program vari-
ables x, y:

while x < y do
x := 3 ∗ x− 3 ∗ y;
y := 4 ∗ y − 2 ∗ x;

od

Which of the following program assertions are inductive loop invariants of p?

� I1 : x = y

� I2 : x+ y = 2

� I3 : 3 ∗ x+ y = 4

Give formal details justifying your answer. That is, if an assertion is an inductive loop
invariant, provide a formal proof of it based on Hoare logic or using weakest liberal
preconditions. If an assertion is not an inductive loop invariant, give a counterexample.

(10 points)



(b) Consider the following rule in Hoare logic:

{A ∧ b} p {B}
{A}if b then p else abort {B}

where A,B are assertions, b is a Boolen expression, and p is an IMP program.

Is this rule sound? If yes, give a formal proof. Otherwise, give a counterexample.

(5 points)



4.) (a) Consider the Kripke structures M1 and M2. The initial state of M1 is s0, the initial
state of M2 is t0. Some labels are given, for example state t0 has label a. On the other
hand most labels in M1 as well as the label of t3 in M2 are missing. Assume that each
state is labeled with a singular label a, b or c.

Kripke structure M1: Kripke structure M2:

s0: __

s1: __ s4: __

s2: __ s3:  c 

s5: __ t0: a 

t1: b t2: c 

t3: __

i. Fill in the missing labels such that M2 simulates M1. Is there more than one
possible solution?

ii. Argue why it is not possible to fill the missing labels such that M1 simulates M2.

(4 points)



(b) Consider the following Kripke structure M :

s0: {b}
s1: {a, b, c}

s2: {b}

s4: {a, c}

s3: {b, c}

For each of the following formulae φ,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and

ii. list the states si on which the formula φ holds; i.e. for which states si do we
have M, si |= φ?
(If φ is a path formula, list the states si such that M, si |= Aφ.)

φ CTL LTL CTL* States si

F(b ∧ c) □ □ □

((b ∧ c) U (a)) □ □ □

EG(b) □ □ □

EX(a ∧ c) □ □ □

E[(b) U (a)] □ □ □

(5 points)



(c) Prove that the following LTL-formulas are tautologies, i.e., they hold for every Kripke
structure M and every path π in M , or find a Kripke structure M and path π in M ,
for which the formula does not hold and justify your answer.

i. ((Fa) U b) → F(b ∧ Fa).

ii. F(b ∧ Fa) → ((Fa) U b).

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut


