1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 December 13, 2022						
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)			

Block 1.)

Consider the following problem.

CHAIN-HALTING

INSTANCE: Two programs Π_1 , Π_2 , that take a string as input and output a string, and a string I.

QUESTION: Does $\Pi_2(\Pi_1(I))$ halt or $\Pi_1(\Pi_2(I))$ halt (or both), i.e., does one program halt when we use as input the output of the other program on input I?

1.a) The following function f provides a polynomial-time many-one reduction from the **HALTING** problem to **CHAIN-HALTING**: for a program Π and a string I, let $f((\Pi, I)) = (\Pi_1, \Pi_2, I')$ with I' = I, $\Pi_2 = \Pi$, and Π_1 given as follows:

 $\Pi_1(\texttt{string }S)\{\\ \texttt{return }S;\\ \}$

(You can assume that the program Π that is part the instances (Π, I) of **HALTING** also takes a string as input and outputs a string.)

Show the correctness of the reduction, i.e.:

 (Π, I) is a yes-instance of **HALTING** $\iff f((\Pi, I))$ is a yes-instance of **CHAIN-HALTING**.

(10 points)

1.b) Check which statements are true/false. 1 point for each correct answer, -1 for each incorrect answer, 0 for no answer. Negative points do not carry over to other exercises.

false	
0	The correctness of the reduction in (a) shows that CHAIN-HALTING is undecidable.
0	The correctness of the reduction in (a) shows that CHAIN-HALTING is semi-decidable.
0	The correctness of the reduction in (a) shows that the complement of CHAIN-HALTING is decidable.
0	If we would have a decision procedure for CHAIN-HALTING , we can solve HALTING using our reduction from (a).
	0

• • If we would have a decision procedure for **HALTING**, we can solve **CHAIN-HALTING** using our reduction from (a).

(5 points)

Block 2.)

2.a) Use Ackermann's reduction and translate

$$A(A(x)) \doteq A(B(x)) \rightarrow B(A(B(x))) \doteq y \lor C(x,y) \doteq C(A(x),B(x))$$

to a satisfiability-equivalent E-formula φ^E . A, B, and C are function symbols, x and y are variables. (4 points)

2.b) Consider the function M, defined as follows.

Algorithm 1: The function M		
Input: x, y, two <i>positive</i> integers		
Output: The computed positive integer value for x, y		
1 if $x == 1$ then		
2 return $2y$;		
3 else if $y == 1$ then		
4 \lfloor return x ;		
5 else return $M(x - 1, M(x, y - 1));$		

Let \mathbb{N} denote the natural numbers *without* 0. Use well-founded induction to show

 $\forall x \, \forall y \, \big((x \in \mathbb{N} \, \wedge \, y \in \mathbb{N}) \, \rightarrow \, \mathbf{M}(x,y) \geq 2y \big).$

(11 points)

Block 3.)

3.a) Let p be the following IMP program, containing the integer-valued program variables x, y, z:

```
\begin{array}{l} z := 0; y := 1 \\ \textbf{while} \ x \neq 0 \ \textbf{do} \\ x := x - 1; \\ z := z + x + y; \\ y := y + 1; \\ \textbf{od} \end{array}
```

Give a loop invariant and variant for the **while** loop in p and use them to formally prove the validity of the total correctness triple $[x = n \land n > 2] p [z = n^2]$.

Note: Make sure that your invariant expresses equalities among x, y, z as well equalities among x, y.

(10 points)

3.b) Let p be the following IMP program, containing the integer-valued program variable x:

while $x \ge 0$ do x := 1

Which of the following Hoare triples are correct? Provide short justifications for your answers (no formal proofs are required).

- (i) $\{x = 0\}$ $p\{x = 1\}$
- (ii) [x = 0] p [x = 1]
- (iii) $[x \le 0]$ $p \ [x = 1]$
- (iv) $\{x = -1\} p \ \{x = 1\}$
- (v) [false] p [x = 1]

(5 points)

4.a) Consider the Kripke structures M_1 and M_2 . The initial state of M_1 is s_0 , the initial state of M_2 is t_0 .

- i. Check whether M_1 and M_2 are bisimilar. If they are bisimilar, provide a bisimulation relation that witnesses $M_1 \equiv M_2$. If they are not bisimilar, provide a CTL* formula φ that holds in exactly one of the structures, i.e., either $M_1 \models \varphi$ and $M_2 \not\models \varphi$, or $M_1 \not\models \varphi$ and $M_2 \models \varphi$. Indicate clearly which of the two structures satisfies the formula.
- ii. Check whether M_2 simulates M_1 , i.e., provide a simulation relation that witnesses $M_1 \preceq M_2$, or briefly explain why M_2 does not simulate M_1 .

(4 points)

4.b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

arphi	CTL	LTL	CTL^*	States s_i
$\begin{array}{c} \mathbf{EG}(c) \\ \mathbf{E}(c \ \mathbf{U} \ \mathbf{G}b) \\ \mathbf{E}(a \ \mathbf{U} \ b) \\ \mathbf{G}(c) \\ \mathbf{F}(a \wedge b) \end{array}$				
$\mathbf{E}(c \ \mathbf{U} \ \mathbf{G}b)$				
$\mathbf{E}(a \ \mathbf{U} \ b)$				
$\mathbf{G}(c)$				
$\mathbf{F}(a \wedge b)$				

(5 points)

4.c) An LTL formula is a *tautology* if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and path π in M for which the formula does not hold and justify your answer.

i. $((\mathbf{G}a \ \mathbf{U} \ \mathbf{G}b) \land \neg b) \Rightarrow \mathbf{FG}(a \land b)$ ii. $\mathbf{FG}(a \land b) \Rightarrow ((\mathbf{G}a \ \mathbf{U} \ \mathbf{G}b) \land \neg b)$

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut