
1 

Logical Foundations of Continuous Query 
Languages for Data Streams  

Carlo Zaniolo 
Computer Science Department 

UCLA 
zaniolo@cs.ucla.edu 

September 2012 



2 

Data Streams 



The Renaissance of Datalog 

  Many DSMS projects were developed during    
  Datalog’s Dark Ages, … 
  The time has come to revisit data stream query 

languages with the insights  and formal tools provided 
by logic--surprising results: 
  Negation is a simpler problem here than in Datalog or 

Prolog, 
  Datalog with minor adjustments becomes a powerful and 

natural language for data streams. 
  These results hold directly on time-stamped data 

streams. 

3 



Outline 

  Analysis and Design of Logic-based 
languages for Data streams 
  One time-stamped Data Stream 
  Closed World Assumption (CWA) for data 

streams. 
  Several time-stamped data streams and the 

synchronization problem, 

  Streamlog, vs. Datalog and Prolog. 

4 



Time-Stamped Data Streams 

A.   Input tuples enter operators in time-stamp order, 
B.  Output of query operators must also be ordered. 

A stream of messages (ground facts): msg(Time, MsgCode) 
Repeated occurrences of a “red" alarm: 

 repeated(T, X) ←  msg(T, X), msg(T0, X), T0 < T . 

   ? repeated(T, red) 
When ‘red alarm’ occurs at time T event , an output tuple is 

produced  if the red alarm had also occurred earlier, 
i.e. at time  T0 < T. 

5 



The Importance of Order 

For repeated occurrence of code ‘red’ we write: ? repeated(T, red)  

     This is OK:  repeated(T, X) ←  msg(T, X), msg(T0, X), T0 <T. 

This is not OK:  repeated(T0, X) ←  msg(T, X), msg(T0, X), T0 < T. 

Thus the T0 event comes first and then when the T event occurs, an 
output tuple is produced at once. 

 An immediate response produces out-of-order outputs. Input 
   (t1  a) … (t2  b), … (t3  b), … (t4 a) produces (t2 b) , (t1  a) 
  of course, we do not want wait until we can output tuples in the 

right order, this would produce a blocking behavior. 

6 



Progressively Closed World Assumption (PCWA)  
for Data Streams 

  PCWA for a single data stream revises the standard CWA of 
deductive databases with the provision that the world knowledge 
is expanding according to the timestamps of the arriving data  
stream tuples. 

  CWA: Once the p is not entailed by the given set of facts and 
Horn rules, then  ¬p   can be safely assumed. 

  PCWA: Once a streamfact(T, . . .) is observed in the input stream, the 
PCWA allows us to assume  ¬streamfact(T0, . . .)  provided that T0 < T , 
and  streamfact(T0, . . .) is not entailed by the fact base augmented 
with the stream facts having timestamp < T. 

7 



Negated Goals 
  First occurrence of code red: 

  Last  occurrence of code red:   

8 

This  query uses negation on events that, according to their 
timestamps, are past events. The query can be answered in the 
present: it is non-blocking. 

We do not know if the current red is the last one until we have seen 
the all stream. Obviously, a blocking query. Thus negation can cause 
blocking but not always.   We must understand when. 



Sequentiality of Rules & Predicates 

A Sequential rule. The TS of the  goals are less or equal than that 
of the head. 

 repeated(T, X) ←  msg(T, X), msg(T0, X), T0 < T. 

Sequentiality is required for all goals. 

Strict sequentiality required for negated goals: 

A strictly sequential rule: time-stamp in the head is > than that of 
every goal. A predicate is strictly sequential when all the rules 
defining it are strictly sequential. 

9 



Stratification in Datalog  

	  minpath(X, Y, D) ←    path(X, Y, D), ¬shorter(X, Y, D).  
   shorter(X, Z, D) ←    path(X, Z, D1), D1 < D.


  	path(X, Y, D) ←   arc(X, Y, D). 
path(X,Z,D) ←   path(X,Y,D1), path(Y,Z,D2), D =D1+D2, ¬shorter(X,Z,D). 


10 

• Inefficient computation, since non-minimal paths are eliminated at the 
end of the recursive iteration, rather than as-soon-as generated. 

• More general kinds of stratifications can solve this problem. E.g.,  
XY-stratification, or Statelog, that are based on the introduction of 
an additional temporal argument—a complication for the users. 

• But in Streamlog the temporal argument is already there!!!!!! 



Shortest Path in Streamlog 

11 

•  Arriving arcs are check against previous paths  
•  now                                 can be added in the last three rules too 
• The last three rules can be condensed into one: 



Bistate Version of a Program 
1.  Rename all the predicates in the body whose temporal argument is less 

than that of the head by the suffix _old 

2.    

12 

The bistate version of the program is stratified: e.g. 
 -   old_path and shorter at  lower stratum  and 
 -   path at  stratum next stratum. 

Thus, the original program is  locally stratified in the  same way. 



Semantics: formal and Operational 

13 

Theorem 1: if the bistate version of the program is stratified then the 
original program is locally stratified. 

Theorem 2:  if the original program is strictly  sequential then its  
bistate version is stratified. 

Perfect Model of a strictly sequential program is simple to compute: 

For each new  arriving data stream fact  
       begin 
         if the fact  has a timestamp larger than that !
          of the previous one, then update the old_ tables;!
          compute the implications of the new fact according to !
            the stratified bistate version of the program.!
     end 



Multiple Streams: Unions 

14 

    msg(T, S) ←  sensr1(T, S). 
    msg(T, S) ←  sensr2(T, S).   

•  On stored data, multiple rules simply define 
disjunction. 

•  But on data streams there is also a time-stamp order 
constraint. 



Multiple Streams: Unions 

15 

Ts= 3 

Ts=  5, 2 

     msg(T, S) ←  sensr1(T, S). 
     msg(T, S) ←  sensr2(T, S). 

When both input buffers have tuples, simply take a tuple that has a mininimal 
timestamp.   



Multiple Streams: Unions 

16 

Ts= 5 

    msg(T, S) ←  sensr1(T, S). 
    msg(T, S) ←  sensr2(T, S).   

Ts= 3 



Multiple Streams: Unions 

17 

Ts= ? 

Ts= 5 

     msg(T, S) ←  sensr1(T, S). 
     msg(T, S) ←  sensr2(T, S). 

•  In order to  perform a correct sort-merge, when one of the imput buffer is 
empty , we must wait until a new tuple arrives.   

•  This strategy can cause long waits, and stop working when one streams 
stops. 

•  System-added punctuation tuples can be used to addres this problem. 



Multiple Streams and Synchronization 

A.   The union of  
two streams: 

B.  Sort-Merge  
of two streams: 

C.  Synchronized union  
of two streams: 

18 

A: what users write. 
B: the partially blocking way in which it is often treated now. 
C: the proper characterization using negation. 



        From correct semantics to better implementation: 
    Backtracking on  Idle Branches 

19 

F4 

U 
Source2 G1 

∑1 Sink 

∑2 Sink 

Source1 F2 F1 F3 

5

? ? 

? ? 

? ? 



Minimizing Idle Waiting in Implementation  

20 

  Generation of punctuation tuples (carrying enabling time 
stamps ETS) to unblock idle waiting union operators. 
  At regular intervals or, on demand, via backtracking. 

Latent: same as no timestamp 



Conclusion 
  Non-monotonic reasoning for data streams can be supported 

quite naturally and efficiently using simple extensions of 
Datalog. 

  We introduced rigorous logical foundations for continuous 
query languages. 

  These are practical solutions that significantly enhance the 
expressive power of continuous  query languages. 

  Streamlog extends Datalog but also benefits from Prolog. 
  Current work: data streams without timestamps, and beyond 

strictly sequential. 
  Future directions: a unified language for stored data and data 

streams: SAUL (Scalable Analytics Unification Language). 

21 



Conclusion 

    Exciting progress in overcoming 
disabilities suffered by DSMS query 
languages in the dark age of our field. 

Thank you! 



References 

23 

1.  B. Babcock, S. Babu, M. Datar, R. Motawani, and J. Widom. Models and issues in data stream systems.In 
PODS, 2002. 

2.  Yijian Bai, Hetal Thakkar, Haixun Wang, Chang Luo, and Carlo Zaniolo. A data stream language 
andsystem designed for power and extensibility. In CIKM, 2006 

3.  Yijian Bai, Hetal Thakkar, Haixun Wang, and Carlo Zaniolo. Timestamp management and query execution 
models in data stream management systems. IEEE Internet Computing, 12(6):13{21, 2008. 

4.  Yuri Gurevich, Dirk Leinders, and Jan Van den Bussche. A theory of stream queriesDatabase 
Programming Languages. DBPL 2007. 

5.  Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Data models and query language for data streams. In 
VLDB 2004. 

6.  Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. From regular expressions to nested words: Unifying 
languages and query execution forrelational and xml sequences. In VLDB 2010. 

7.   P.Tucker, D. Maier, and T.Sheard. Applying punctuation schemes to queries over continuous data 
streams. IEEE Data Engineering Bulletin,26(1):33{40, 2003. 

8.  Arcot Rajasekar, Jorge Lobo,  Jack Minker. Weak generalized closed world assumption. J. Autom. 
Reasoning, 5(3), 1989. 

9.  Raymond Reiter. Deductive question-answering on relational data bases. In Herve Gallaire and Jack 
Minker, editors, Logic and Data Bases, Symposium on Logic and Data Bases, Toulouse, 1977. 

10.  Hetal Thakkar, Nikolay Laptev, Hamid Mousavi,Barzan Mozafari, Vincenzo Russo, and Carlo 
Zaniolo.Smm: a data stream management system for knowledge discovery. In ICDE, page 1, 2011. 


