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Data Streams 



The Renaissance of Datalog 

  Many DSMS projects were developed during    
  Datalog’s Dark Ages, … 
  The time has come to revisit data stream query 

languages with the insights  and formal tools provided 
by logic--surprising results: 
  Negation is a simpler problem here than in Datalog or 

Prolog, 
  Datalog with minor adjustments becomes a powerful and 

natural language for data streams. 
  These results hold directly on time-stamped data 

streams. 
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Outline 

  Analysis and Design of Logic-based 
languages for Data streams 
  One time-stamped Data Stream 
  Closed World Assumption (CWA) for data 

streams. 
  Several time-stamped data streams and the 

synchronization problem, 

  Streamlog, vs. Datalog and Prolog. 
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Time-Stamped Data Streams 

A.   Input tuples enter operators in time-stamp order, 
B.  Output of query operators must also be ordered. 

A stream of messages (ground facts): msg(Time, MsgCode) 
Repeated occurrences of a “red" alarm: 

 repeated(T, X) ←  msg(T, X), msg(T0, X), T0 < T . 

   ? repeated(T, red) 
When ‘red alarm’ occurs at time T event , an output tuple is 

produced  if the red alarm had also occurred earlier, 
i.e. at time  T0 < T. 
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The Importance of Order 

For repeated occurrence of code ‘red’ we write: ? repeated(T, red)  

     This is OK:  repeated(T, X) ←  msg(T, X), msg(T0, X), T0 <T. 

This is not OK:  repeated(T0, X) ←  msg(T, X), msg(T0, X), T0 < T. 

Thus the T0 event comes first and then when the T event occurs, an 
output tuple is produced at once. 

 An immediate response produces out-of-order outputs. Input 
   (t1  a) … (t2  b), … (t3  b), … (t4 a) produces (t2 b) , (t1  a) 
  of course, we do not want wait until we can output tuples in the 

right order, this would produce a blocking behavior. 
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Progressively Closed World Assumption (PCWA)  
for Data Streams 

  PCWA for a single data stream revises the standard CWA of 
deductive databases with the provision that the world knowledge 
is expanding according to the timestamps of the arriving data  
stream tuples. 

  CWA: Once the p is not entailed by the given set of facts and 
Horn rules, then  ¬p   can be safely assumed. 

  PCWA: Once a streamfact(T, . . .) is observed in the input stream, the 
PCWA allows us to assume  ¬streamfact(T0, . . .)  provided that T0 < T , 
and  streamfact(T0, . . .) is not entailed by the fact base augmented 
with the stream facts having timestamp < T. 
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Negated Goals 
  First occurrence of code red: 

  Last  occurrence of code red:   
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This  query uses negation on events that, according to their 
timestamps, are past events. The query can be answered in the 
present: it is non-blocking. 

We do not know if the current red is the last one until we have seen 
the all stream. Obviously, a blocking query. Thus negation can cause 
blocking but not always.   We must understand when. 



Sequentiality of Rules & Predicates 

A Sequential rule. The TS of the  goals are less or equal than that 
of the head. 

 repeated(T, X) ←  msg(T, X), msg(T0, X), T0 < T. 

Sequentiality is required for all goals. 

Strict sequentiality required for negated goals: 

A strictly sequential rule: time-stamp in the head is > than that of 
every goal. A predicate is strictly sequential when all the rules 
defining it are strictly sequential. 
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Stratification in Datalog  

	  minpath(X, Y, D) ←    path(X, Y, D), ¬shorter(X, Y, D).  
   shorter(X, Z, D) ←    path(X, Z, D1), D1 < D.


  	path(X, Y, D) ←   arc(X, Y, D). 
path(X,Z,D) ←   path(X,Y,D1), path(Y,Z,D2), D =D1+D2, ¬shorter(X,Z,D). 
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• Inefficient computation, since non-minimal paths are eliminated at the 
end of the recursive iteration, rather than as-soon-as generated. 

• More general kinds of stratifications can solve this problem. E.g.,  
XY-stratification, or Statelog, that are based on the introduction of 
an additional temporal argument—a complication for the users. 

• But in Streamlog the temporal argument is already there!!!!!! 



Shortest Path in Streamlog 
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•  Arriving arcs are check against previous paths  
•  now                                 can be added in the last three rules too 
• The last three rules can be condensed into one: 



Bistate Version of a Program 
1.  Rename all the predicates in the body whose temporal argument is less 

than that of the head by the suffix _old 

2.    
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The bistate version of the program is stratified: e.g. 
 -   old_path and shorter at  lower stratum  and 
 -   path at  stratum next stratum. 

Thus, the original program is  locally stratified in the  same way. 



Semantics: formal and Operational 
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Theorem 1: if the bistate version of the program is stratified then the 
original program is locally stratified. 

Theorem 2:  if the original program is strictly  sequential then its  
bistate version is stratified. 

Perfect Model of a strictly sequential program is simple to compute: 

For each new  arriving data stream fact  
       begin 
         if the fact  has a timestamp larger than that !
          of the previous one, then update the old_ tables;!
          compute the implications of the new fact according to !
            the stratified bistate version of the program.!
     end 



Multiple Streams: Unions 
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    msg(T, S) ←  sensr1(T, S). 
    msg(T, S) ←  sensr2(T, S).   

•  On stored data, multiple rules simply define 
disjunction. 

•  But on data streams there is also a time-stamp order 
constraint. 



Multiple Streams: Unions 

15 

Ts= 3 

Ts=  5, 2 

     msg(T, S) ←  sensr1(T, S). 
     msg(T, S) ←  sensr2(T, S). 

When both input buffers have tuples, simply take a tuple that has a mininimal 
timestamp.   



Multiple Streams: Unions 
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Ts= 5 

    msg(T, S) ←  sensr1(T, S). 
    msg(T, S) ←  sensr2(T, S).   

Ts= 3 



Multiple Streams: Unions 
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Ts= ? 

Ts= 5 

     msg(T, S) ←  sensr1(T, S). 
     msg(T, S) ←  sensr2(T, S). 

•  In order to  perform a correct sort-merge, when one of the imput buffer is 
empty , we must wait until a new tuple arrives.   

•  This strategy can cause long waits, and stop working when one streams 
stops. 

•  System-added punctuation tuples can be used to addres this problem. 



Multiple Streams and Synchronization 

A.   The union of  
two streams: 

B.  Sort-Merge  
of two streams: 

C.  Synchronized union  
of two streams: 
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A: what users write. 
B: the partially blocking way in which it is often treated now. 
C: the proper characterization using negation. 



        From correct semantics to better implementation: 
    Backtracking on  Idle Branches 
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Minimizing Idle Waiting in Implementation  
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  Generation of punctuation tuples (carrying enabling time 
stamps ETS) to unblock idle waiting union operators. 
  At regular intervals or, on demand, via backtracking. 

Latent: same as no timestamp 



Conclusion 
  Non-monotonic reasoning for data streams can be supported 

quite naturally and efficiently using simple extensions of 
Datalog. 

  We introduced rigorous logical foundations for continuous 
query languages. 

  These are practical solutions that significantly enhance the 
expressive power of continuous  query languages. 

  Streamlog extends Datalog but also benefits from Prolog. 
  Current work: data streams without timestamps, and beyond 

strictly sequential. 
  Future directions: a unified language for stored data and data 

streams: SAUL (Scalable Analytics Unification Language). 
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Conclusion 

    Exciting progress in overcoming 
disabilities suffered by DSMS query 
languages in the dark age of our field. 

Thank you! 
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